hx
2, xim > 0
Zx
0
tgn−1(t)dt ≥Zx
x
2
x
2mdt =mx2
4>0
(∗)σ]0, α[
Zx
0
Gn−1(t)
Gn−1(x)dt (∗∗)
[0, α]x7→
Zx
0
Gn−1(t)dt C1[0, α] (∗∗)
∀x∈]0, α[, σ(x) = x−1
Gn−1(x)Zx
0
Gn−1(t)dt
1
Gn−1
C1]0, α[C1
gn]0, α[
σC1]0, α[ (∗)
∀x∈]0, α[, σ0(x) = 1
Gn−1(x)0Zx
0
tgn−1(t)dt −1
Gn−1(x)xgn−1(x)
=−gn−1(x)
Gn−1(x)2Zx
0
tgn−1(t)dt −xgn−1(x)
Gn−1(x)
=−gn−1(x)
Gn−1(x)(σ(x)−x) = gn−1(x)
Gn−1(x)
| {z }
>0
(x−σ(x))
σ0
σ
C1]0, α[
]0, α[lim
0+σ, lim
α−
σ
lim
0+σ= 0
Yn−1]0, α[Gn−1(α) = 1 (∗)
lim
α−
σ=Zα
0
tgn−1(t)dt = E(Yn−1).
γ(x, y) = (x−y)Gn−1σ−1(y)= (x−σ(z))Gn−1(z)
= (x−z)Gn−1(z)+(z−σ(z))
|{z }
=Zz
0
Gn−1(t)
Gn−1(z)dt (∗∗)
Gn−1(z)=(x−z)Gn−1(z) + Zz
0
Gn−1(t)dt
y=σ(x)z=x
γ(x, σ(x)) = Zx
0
Gn−1(t)dt
y
γ(x, σ(x)) −γ(x, y) = Zx
0
Gn−1(t)dt −(x−z)Gn−1(z)−Zz
0
Gn−1(t)dt
= (z−x)Gn−1(z)−Zz
x
Gn−1(t)dt.
γ(x, σ(x)) −γ(x, y) = Zz
xGn−1(z)−Gn−1(t)dt
Gn−1
x≤z
∀t∈[x, z], Gn−1(z)−Gn−1(t)≥0
γ(x, σ(x)) −γ(x, y)≥0.
x≥z
∀t∈[z, x], Gn−1(z)−Gn−1(t)≤0
γ(x, σ(x)) −γ(x, y)≥0.
∀x∈]0, α[,∀y∈]0, β[, γ(x, y)≤γ(x, σ(x))
x∈]0, α[y∈]0, β[7→ γ(x, y)
σ(x)