TS www.pichegru.net 11 septembre 2016
- 1 -
Exercices 000 : Incertitudes, CS et Unités
1 Chiffres significatifs
Exprimer le résultat de ces calculs avec le bon nombre de chiffres
significatifs.
1. 153 m + 2,0 cm
2. 31,0 kg – 0,14 kg
3. 45/0,06
4. 78,0×2,0·10
2
5. log 1,5·10
-3
6. Concentration en H
3
O
+
d’une solution de pH 4,85.
7. Une grandeur calculée vaut x = 187,25. L’incertitude x calculée vaut
x = 1,23. Écrire la valeur de cette grandeur sous la forme x ± x.
2 Incertitude de lecture
On mesure les dimensions d’une feuille de papier avec une règle
graduée au millimètre. On trouve une largeur
= 21,0 cm et une
longueur L = 29,7 cm.
1.a. Exprimer la largeur et la longueur sous la forme
±
et L ± L en
ne tenant compte que de l’incertitude de lecture.
1.b. Donner l’incertitude relative associée à ces deux mesures.
2.a En déduire un encadrement de la surface S de la feuille, puis
exprimer cette surface sous la forme S ± S (incertitude absolue)
2.b. En déduire l’incertitude relative sur cette surface.
3 Formules donnant l’incertitude
1. Extrait de « Antilles 2013 - Ex.3 »
Dans les questions précédentes, il a été trouvé que le rapport e/m vaut
1,76·10
11
kg
-1
On donne ci-dessous les valeurs des grandeurs utilisées, avec les
incertitudes associées:
v
0
= (2,27 ± 0,02)·10
7
s
-1
L = (8,50 ± 0,05) cm
E = (15,0 ± 0,1) kV·m
-1
h = (1,85 ± 0,05) cm
L’incertitude du rapport e/m, notée
m
e
U
, s’exprime par la formule :
2
2
0
0
22
)(
4
)(
4
)()(
+
+
+
=
LLU
v
vU
E
EU
hhU
m
e
m
e
U
Calculer l’incertitude
m
e
U puis exprimer le résultat de
m
e
avec cette
incertitude.
2. Extrait de « Annales 0 nº1 - Ex.3 »
Dans les questions précédentes, il a été trouvé que
)1
'
(
0
=
λ
λ
cv , avec
λ
’= 507 nm et
λ
0
= 486 nm et c la vitesse de la lumière dans le vide.
• On donne la relation d’incertitude suivante pour la vitesse :
λ
λ
=cv 2 . On exprimera le résultat sous la forme : v ± v. Les
valeurs numériques sur les spectres sont données à ±1 nm.
4 Incertitudes et série de mesures
Plusieurs mesures d’une grandeur x ont donné les résultats suivants :
4,24 ; 4,12 ; 4,27 ; 4,32 ; 4,18 ; 4,30 ; 4,28 ; 3,01
1. Donner la valeur moyenne et l’écart-type
σ
de cette série de mesure
2. Sachant que, pour un niveau de confiance de 95 %, l’incertitude
absolue x est donnée par la formule n
x
σ
2
=, n étant le nombre de
mesures effectuées, calculer cette incertitude.
3. La valeur réelle est de 4,23. Commenter. La mesure est-elle juste ?
Fidèle ? Que pourrait-on faire pour améliorer ce résultat ?
5 Décomposition d’unités
Décomposer les unités newton, joule et watt dans les unités
fondamentales.
6 Homogénéité d’une relation
1. Extrait de « Amérique du Nord 2013 - Ex.2 »
• Débit d’éjection des gaz au décollage :
D = 2,9·10
3
kg·s
-1
• Vitesse d’éjection des gaz au décollage : v
g
= 4,0 km·s
-1
Montrer que le produit
g
vD est homogène à une force.
2. Extrait de « Amérique du Sud 2013 - Ex.2 »
La résistance thermique
R
th
(en W
-1
) d’une paroi plane est
inversement proportionnelle à la conductivité thermique λ (en
m
-1
·K
-1
) du matériau qui la constitue et à la surface S traversée, et
proportionnelle à l’épaisseur e.
À partir des informations ci-dessus, donner l’expression de la résistance
thermique d'une paroi plane. Vérifier l’homogénéité de votre expression.
3. Extrait de « Métropole 2014 - Ex.3 »
• Constante de gravitation universelle : G = 6,67×10
-11
m
3
·kg
-1
·s
-2
La troisième loi de Kepler s’écrit
S
2
3
2
π
4MG
a
T
=a est le demi grand
axe de l’ellipse, T la période pour parcourir la totalité de l’ellipse, G la
constante de gravitation universelle et M
S
la masse de l’astre attracteur.
Montrer que cette relation est homogène.
4. Période d’oscillation d’un pendule
La période d’oscillation d’un pendule T, de longueur
, dans un champ
de pesanteur d’intensité g est donnée par :
(a)
l
g
π
T
= 2 ; (b)
l= gπT2 ;
(c) g
πTl
= 2 ; (d) l
= g
πT1
2
Trouver la bonne réponse en la justifiant.
5. Concentration massique
Trouver la relation liant la concentration massique C
m
, la concentration
molaire C et la masse molaire M d’une substance en solution, en ne vous
basant que sur les unités de ces grandeurs.
7 Calcul avec des unités
Retrouver les unités de G, constante de la gravitation universelle, dans le
système S.I.
TS www.pichegru.net 11 septembre 2016
- 2 -
Correction
Ex.1
1. 153 m + 2,0 cm = 153 m
Le dernier chiffre de 153 m correspond au rang des mètres. Le dernier
chiffre de 2,0 cm correspond au dixème de centimètre. L’expression du
résultat se limitera donc au mètre.
2. 31,0 kg – 0,14 kg = 30,9 kg
3. 45/0,06 = 8·10
2
(un seul CS)
4. 78,0×2,0·10
2
= 1,6·10
4
5. log 1,5·10
-3
= -2,82 (2CS pour la valeur 2 chiffres après la virgule
pour son logarithme).
6. [H
3
O
+
] = 10
-4,85
= 1,4·10
-5
(2 chiffres après la virgule pour le
logartihme 2 CS pour la valeur).
7. Un seul CS pour l’incertitude, donc x = 1. L’incertitude a donc le
rang des unités, on limitera donc l’écriture de la valeur de x au même
rang : x = 187 ± 1.
Ex.2
1.a.
= 21,0 ± 0,05 cm et L = 29,7 ± 0,05 cm car l’incertitude totale
correspond à la plus petite gradution (ici, le mm).
1.b. Incertitude relative :
/
= 0,002 soit 0,2 % et L/L = 0,2 % aussi à
cause de l’arrondi à un seul chiffre significatif.
2.a. S
min
= 20,95×29,67 = 621,6 cm
2
et S
max
= 21,05×29,75 = 626,2 cm
2
.
Pour écrire ceci sous la forme S ± S, on prend la valeur moyenne de S
(623,9 cm
2
) et S vaut la moitié de S
max
S
min
, soit 4,6 cm
2
, que l’on
arrondit à 5 cm
2
(car une incertitude s’exprime avec un seul CS).
D’où S = 624 ± 5 cm
2
.
2.b. S/S = 0,8 %.
Ex.3
1. Le calcul donne : U (e/m) = 6,2×10
9
kg
-1
donc e/m = (1,76 ± 0,06)×10
11
kg
-1
2. v = 3,00·10
8
×(507/486 – 1) = 1,30·10
7
s
-1
=××=507
1
1000,32
8
v10
5
s
-1
D’où v = (1,30 ± 0,08)·10
7
s
-1
Remarque : on peut aussi faire 486
1
1000,32
8
××=v, ce qui donne
la même chose avec l’arrondi.
Ex.4
1. On fait le calcul en éliminant la valeur 3,01 qui est trop différente des
autres.
Moyenne : 4,244 ; écart-type : 0,0711 (remarque : pour une raison que
j’ignore, le calcul de l’écart type par Excel (0,0711) et par les
calculatrices ne donne pas tout à fait le même valeur).
2. Ici, n = 7 car on travaille avec 7 mesures. x = 0,0538 que l’on
arrondit à 0,05.
3. La mesure est juste, car la moyenne (4,24) est très proche de la valeur
réelle. Elle n’est cependant pas très fidèle, car certaines mesures s’en
éloigne pas mal (4,12 par exemple).
Pour améliorer ce résultat, on pourrait faire plus de mesures.
Ex.5
Newton : F = m·a donc N = kg·s
-2
Joule : E = ½·m·v
2
donc J = kg·m
2
·s
-2
Watt : P = E/t donc W = kg·m
2
·s
-3
Ex.6
1. [D·v
g
] = M·T
-1
×L·T
-1
= T
-2
. Une force a les mêmes unité qu’une
masse × accélération soit T
-2
. Donc le produit D·v
g
est homogène à
une force.
2. S
e
R
=
λ
epolystyrèn
1
211- WK
mKmW
m
=
=
S
e
λ
. Cette relation est bien homogène
car nous avons les mêmes unités des deux côtés de l’égalité.
3.
S
32
π4MG a
T
=et
s
s1
kgskgm mπ4
2213
3
S
32
==
×
=
MG a. L’expression de T est
bien homogène a des secondes.
4.
L’intensité de la pesanteur s’exprime en s
-2
, la longueur
en m et le
facteur 2π est sans dimension et donc sans unité. La période T s’exprime
en seconde.
• (a) :
1
2
s
m
sm
=
=
l
g. Cette relation n’est pas homogène.
• (b) :
[
]
-12
smmsm ==
lg. Cette relation n’est pas homogène.
• (c) : s
sm
m
2
=
=
g
l. Cette relation est homogène.
• (d) :
1-
2
ms
msm
11 =
=
lg. Cette relation n’est pas
homogène.
La seule relation homogène est la (c). C’est donc elle qui est juste.
Ex.7
G intervient dans l’expression de la force d’attraction gravitationnelle :
2BA
r
mmG
F
=
D’autre part, on sait qu’une force est une masse × une accélération.
Donc :
2
2
2
m
kg][
smkg
=
G
Après simplification, on trouve que
213
skgm][
=G
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !