Grandissement et grossissement
I. Formule de conjugaison et grandissement :
1. Construire l’image A’Bde AB à travers la lentille de distance focale f’=0,20m en dessinant la
marche de 3 rayons.
2. En utilisant le théorème de Thalès, retrouver la formule de conjugaison :
'
11
'
1f
OAOA
Dans les triangles OAB et OA’B’, les relations de Thalès donnent :
''' BA
AB
OA
OA
Dans les triangles F’OH et F’A’B’, les relations de Thalès donnent :
''''''
'
BA
AB
BA
OH
AF
OF
On en déduit que :
'''
'
AO
OA
AF
OF
avec
'''''' OAfOAOFAF
on obtient :
'''
'
AO
OA
OAf
f
ou encore
OA
OA
fOAf'
'''
soit
OA
OA
f
OA '
''
1
En divisant par
:
OA
f
OA
1
'
1
'
1
ce qui donne en réorganisant :
'
11
'
1f
OAOA
3. On définit le grandissement γ comme le rapport :
AB
BA ''
.
Exprimer γ en fonction de
'OA
et
OA
.
Dans les triangles OAB et OA’B’, les relations de Thalès donnent :
''' BA
AB
OA
OA
d'où
OA
OA'
Que peut-on dire de l’image si
1
? image plus grande que l’objet
Si
0
? image renversée
Calculer le rapport pour le cas de la figure 1.
II. Instrument d’optique : la loupe
Une loupe grossissante est une lentille convergente de distance focale f’.
1. Lorsqu’on utilise une loupe grossissante, où se situe l’image qu’on regarde par rapport à la lentille ?
L’image est-elle réelle ou virtuelle ?
On regarde l’image à travers la loupe ; elle n’est donc pas projetée sur un écran et n’est donc pas
réelle mais virtuelle.
2. Dans quelle zone l’objet doit-il être placé pour satisfaire cette condition ?
Il faut que l’objet soit placé entre la lentille et le foyer objet.
3. Déterminer graphiquement la position de l’image dans les deux cas suivants.
Peut-on considérer que la lentille constitue une loupe dans ces deux cas ? Justifier.
Il s’agit bien d’une loupe : l’image est virtuelle et agrandie dans les deux cas.
Lequel de ces cas correspond à l’utilisation la plus confortable ? Justifier.
Lorsque l’objet est au foyer, l’image est rejetée à l’infini ; elle constitue un objet à l’infini pour l’œil
qui n’accommode pas et est au repos, ce qui est le cas le plus confortable.
III. Grossissement :
1. Quelle est la distance la plus petite, dans le cas d’un œil normal, à laquelle on peut observer
nettement l’objet AB ?
Exprimer l’angle apparent α sous lequel on observe alors cet objet.
Rq : dans le cas d’angle petit (ce qui est le cas pour l’observation de petits objets), on peut
considérer que
tan
.
Calculer cet angle dans le cas d’un objet dont la taille est AB = 6,0mm.
25,0
AB
2. Déterminer graphiquement la direction des rayons issus de B, émergeant de la loupe de distance
focale f’ = 6,0cm.
α
O
A
B
3. Déterminer l’expression de l’angle α’ en fonction de AB et f’, avec lequel les rayons arrivent dans
l’œil de l’observateur.
Rq : on utilisera également l’approximation
'tan'
'
'f
AB
4. On définit le grossissement G d’un instrument d’optique comme le rapport :
'
G
.
Donner l’expression de G pour une loupe en fonction de f’.
'
25,0
25,0
'
'f
AB
f
AB
G
Calculer G dans le cas de la loupe étudiée.
2,4
06,0 25,0 G
L’image est grossie 4,2 fois.
IV. Application :
Une lentille mince L1, de centre optique O, donne d’un objet AB haut de 2,0cm et situé à 12,0cm en
avant de la lentille image réelle A1B1 située 6,0cm après la lentille. AB est perpendiculaire à l’axe
principal de la lentille et A est situé sur cet axe.
1. Déterminer la distance focale de la lentille, ainsi que sa vergence C1.
On utilise la formule de conjugaison :
'
111
1
111 f
AOAO
Avec
mAO 12,0
1
mAO 060,0
11
25
12,01
060,0 1
'
1
1
1f
C
Soit f1 = 4,0 cm
2. Faire un schéma à l’échelle 1 et retrouver la position de l’image A1B1. Mesurer la taille de cette
image
échelle : 1carreau représente 1cm
3. Déterminer par le calcul le grandissement γ1 de la lentille L1, et retrouver la valeur de la taille de
l’image 1 mesurée précédemment.
graphiquement : γ1 = -0,5
Par le calcul :
50,0
12,0 06,0
1
11
1
AO
AO
Les deux valeurs concordent.
On place au-delà de L1, à 8cm de O1, une lentille mince convergente L2 de distance focale f’2=3cm. A1B1
est pour la lentille L2.
4. Déterminer par le calcul la position A2B2 de l’image de A1B1 obtenue par la lentille L2. Cette image
sera t’elle réelle ou virtuelle ? Justifier.
Formule de conjugaison :
'
111
2
1222 f
AOAO
D’où
'
111
2
1222 f
AOAO
Avec
mAOOOAO 020,0060,0080,0
111212
et f2= 0,030 m
7,16
030,0 1
020,011
22
AO
soit
mAO 060,0
12
Il s’agit d’une image virtuelle puisqu’elle est située 6,0cm avant la lentille L2.
5. Vérifier le calcul précédent en complétant votre schéma et en y construisant l’image A2B2.
échelle : 1carreau représente 1cm
6. Calculer le grandissement γ2 de la lentille L2 ; en déduire la taille de l’image A2B2. Vérifier sur le
schéma.
3
02,0 06,0
12
22
2
AO
AO
L’image A2B2 est bien 3 fois plus grande que l’objet A1B1, et dans le même sens.
7. Exprimer le rapport A2B2/AB en fonction des grandissements des deux lentilles. Quel est l’intérêt
d’un tel montage.
5,135,0
12
11
11
2222
AB
BA
BA
BA
AB
BA
A travers ce système optique, l’image finale obtenue est agrandie 1,5 fois et renversée.
Exercices livre : P23 n°9, 13, 14, 15, 16
n°9
1. Traduisons les hypothèses de l’énoncé sur un schéma à l’échelle :
30 cm en réalité soit 15cm à léchelle 1/2
Image réelle renversée
de taille 72mm (soit
36mm à léchelle
1 / 9 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !