Enumeration and Decidable Properties of
Automatic Sequences
´
Emilie Charlier1Narad Rampersad 2Jeffrey Shallit1
1University of Waterloo
2Universit´e de Li`ege
Num´eration
Li`ege, June 6, 2011
k-automatic words
An infinite word x= (xn)n0is k-automatic if it is computable by
a finite automaton taking as input the base-krepresentation of n,
and having xnas the output associated with the last state
encountered.
Example
The Thue-Morse word is 2-automatic:
t=t0t1t2···= 011010011001 ···
It is defined by tn= 0 if the binary representation of nhas an even
number of 1’s and tn= 1 otherwise.
0 1
0 0
1
1
Properties of the Thue-Morse word
Iaperiodic
Iuniformly recurrent
Icontains no block of the form xxx
Icontains at most 4nblocks of length n+ 1 for n1
Ietc.
Enumeration and decidable properties
We present algorithms to decide if a k-automatic word
Iis aperiodic
Iis recurrent
Iavoids repetitions
Ietc.
We also describe algorithms to calculate its
Icomplexity function
Irecurrence function
Ietc.
Connection with logic
Theorem (Allouche-Rampersad-Shallit 2009)
Many properties are decidable for k-automatic words.
These properties are decidable because they are expressible as
predicates in the first-order structure hN,+,Vki, where Vk(n)is
the largest power of kdividing n.
Main idea
If we can express a property of a k-automatic word xusing
quantifiers, logical operations, integer variables, the operations of
addition, subtraction, indexing into x, and comparison of integers
or elements of x, then this property is decidable.
1 / 26 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !