Enumeration and Decidable Properties of
Automatic Sequences
´
Emilie Charlier1Narad Rampersad 2Jeffrey Shallit1
1University of Waterloo
2Universit´e de Li`ege
AMMCS
Waterloo, July 26, 2011
k-automatic words
An infinite word x= (xn)n0is k-automatic if it is computable by
a finite automaton taking as input the base-krepresentation of n,
and having xnas the output associated with the last state
encountered.
Example
The Thue-Morse word is 2-automatic:
t=t0t1t2···= 011010011001 ···
It is defined by tn= 0 if the binary representation of nhas an even
number of 1’s and tn= 1 otherwise.
0 1
0 0
1
1
Properties of the Thue-Morse word
Iaperiodic
Iuniformly recurrent
Icontains no block of the form xxx
Icontains at most 4nblocks of length n+ 1 for n1
Ietc.
Enumeration and decidable properties
We present algorithms to decide if a k-automatic word
Iis aperiodic
Iis recurrent
Iavoids repetitions
Ietc.
We also describe algorithms to calculate its
Icomplexity function
Irecurrence function
Ietc.
Connection with logic
Theorem (Honkala 1986)
Ultimate periodicity is decidable for k-automatic words.
Theorem (Allouche-Rampersad-Shallit 2009)
Squarefreeness is decidable for k-automatic words.
These properties are decidable because they are expressible as a
predicates in the first-order structure hN,+,Vki, where Vk(n)is
the largest power of kdividing n.
Main idea
If we can express a property of a k-automatic word xusing
quantifiers, logical operations, integer variables, the operations of
addition, subtraction, indexing into x, and comparison of integers
or elements of x, then this property is decidable.
1 / 27 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !