Discrete Probabilities on Natural Numbers: Existence Theorems

Telechargé par roni
On Certain Discrete Probabilities
Theorem 1. For every real number s >1there exists a discrete probability Pon ¡N,2N¢such that
P(kN)=ks
for all k N.
Proof. Putting P¡{n}¢:=ζ(s)1nsfor all singletons {n}2N, where
ζ(s):=X
n1
ns
is Riemanns zeta function, we get a well defined descrete measure P:2NR+which satisfies
P(kN)=X
n1
P¡{kn}¢=ζ(s)1ksX
n1
ns=ks
as desired, and in particular it holds P(N)=1, so that Pis a probability measure. ä
Theorem 2. Let s ]0,1] be a real number. Then there is no probability measure Pon ¡N,2N¢such that
P(kN)=ks
for all k N.
Proof. Let Pdenote the set of all primes and put Pn:=©pP¯
¯npªas well as Pn,m:=©pP¯
¯npmª
for all n,mN. It holds limm→∞ Pn,m=Pnand limn→∞ Pn= ;. We apply a reasoning ad absurdum and
assume that there exists a probability measure Psuch that P(kN)=ks. Then we have
1Pµ[
pPn,m
pN=X
QPn,m
(1)card QPµ\
pQ
pN=X
QPn,m
(1)card QP
µY
pQ
pN
=X
QPn,m
(1)card QY
pQ
ps=Y
pPn,m
¡1ps¢.
Now recall that, given a sequence (am)mm0of real numbers am]0,1[ , we have the equivalence
X
mm0
am= ∞ Y
mm0
(1 am)=0.
But it is well known (and easy to prove) that
X
pPn
ps= ,
hence
Y
pPn
¡1ps¢=0,
and it follows
P³©kN¯
¯k<nª´1Pµ[
pPn
pN=1lim
m→∞
Pµ[
pPn,m
pN
=lim
m→∞ Y
pPn,m
¡1ps¢=Y
pPn
¡1ps¢=0
and finally
1=P(N)=lim
n→∞
P³©kN¯
¯k<nª´=0,
which is a contradiction. This proves the theorem. ä
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans l'interface ou les textes ? Ou savez-vous comment améliorer l'interface utilisateur de StudyLib ? N'hésitez pas à envoyer vos suggestions. C'est très important pour nous!