"F^,&&#!&,3#($#!7)3#!-#-!4/0.0(3-!Z!03)#%!(03),2!_0/`&0$2!.0(1#-!(,%1)5(#-2!64-2!&,$1(#-2!
.;(,$,&51(#-2!&)$%1#%(-2!/0&4#-!3#!4,.;#2!.0&'(02!0440(#)/!3#!4;,1,-2!06#$302!+/,.]$,1#-2!.,$-,/#!
3#!@#%2!&)$)!ab2!3).104;,$#2!.0/.%/#11#!R!4,--'3#(!$F#-1!4/%-!%$#!4(),()1'8!I)-4,-#(!3#!/0!=,$.1),$!
-%==)18!
G1!4%)-2!+,$@,%(!1,%1#-!/#-!044/).01),$-!*%)!#$70;)--#$1!$,1(#!-&0(1!4;,$#!#1!*%)!$,%-!4#(#$1!3#!
&)#%O!6'(#(!$,1(#!1#&4-2!$,1(#!.,$-,&&01),$2!$,-!(#/01),$-2!$,-!=,(&0/)1'-!R!#1!*%)!$,%-!3,$$#$1!
/F)&4(#--),$!3FE1(#!6(0$32!=,(1!#1!)&4,(10$18!
a,%1!'&#(7#)//'!40(!/#-!7#(1%-!3#!/0!1#.;$,/,6)#!/)'#!M!/0!&,+)/)1'2!/F^,&&#!-#!!M!1(,%7#(!$,(&0/!
3#!.,$=)#(!1,%1#-!-#-!3,$$'#-!0%!A!('-#0%!C2!.#!*%F)/!0!(#=%-'!3#4%)-!cd!0$-8!9/!#$!0(()7#!&E&#!M!07,)(!
4/%-!.,$=)0$.#!30$-!/F0(.;)706#!'/#.1(,$)*%#!*%#!30$-!-,$!4(,4(#!./0--#&#$1!3#!-#-!3,.%&#$1-!
,()6)$0%O!V!Q0(!.,$-'*%#$12!/0!-01)-=0.1),$!3#!-,$!+#-,)$!3#!A!(0$6#&#$1!=0.)/#!C!40--#!070$1!-,$!
3(,)1!M!/F0$,$<&01!30$-!-#-!0==0)(#-!4()7'#-2!.#!*%)!1P1!,%!10(3!4,-#(0!%$!4(,+/5&#!#$!.0-!3#!.,$=/)18!!
!
e%,)!*%F)/!#$!-,)12!.F#-1!%$!;,&&#!$,%7#0%!*%)!@0)//)1!3#!$,1(#!Y&0(14;,$#2!)&4,-0$1!%$!$,%7#0%!
&,35/#!-,.),'.,$,&)*%#!Z!.#/%)!*%)!1,%($#!/#!3,-!M!/0!/,6)*%#!3%!A!1,%@,%(-!4/%-!C!4,%(!0//#(!7#(-!/#!
«&toujours&mieux&»2!0%1(#&#$1!3)12!%$!.;0$6#&#$1!3F'.;#//#!3#-!70/#%(-8!
!
Vers#une#civilisation#portée#par#une#révolution#horizontale#
Q,%(!3)=='(#$1#-!(0)-,$-2!3,$1!/#!3'7#/,44#&#$1!3%!$%&'()*%#2!/0!.)7)/)-01),$!,..)3#$10/!#-1!0(()7'#!
0%!+,%1!3#!-#-!/)&)1#-8!e%#/!$,%7#0%!&,35/#!0//,$-]$,%-!03,41#(!f!G-1].#!/#-!,..)3#$10%O!*%)!7,$1!
/F)$7#$1#(!,%!3F0%1(#-!.)1,<#$-!3%!&,$3#!f!!
G$!('0/)1'2!.F#-1!/0!./0--#!&,<#$$#!3#!1,%1#!/0!4/0$51#!*%)!#-1!#$!1(0)$!3#!/0!=0+()*%#(!#$!(#=%-0$1!/0!
-,%-].,$-,&&01),$!3#-!4/%-!40%7(#-!#1!#$!-#!&,*%0$1!3#!/0!-%(.,$-,&&01),$!3#-!4/%-!().;#-2!*%)!
=)$0/#&#$12!4#)$#$1!M!1(,%7#(!/#!+,$;#%(8!!
I0$-!.#11#!0==0)(#!3#!&%101),$2!.#!$#!-,$1!4/%-!3#-!'101-!*%)!-#!#$1!#$!.,&4'1)1),$2!&0)-!%$#!
./0--#!&,<#$$#!&,$3)0/)-'#!*%)!4/'+)-.)1#!%$!$,%7#0%!&,35/#!3#!-,.)'1'8!NF#-1!#$!*%#/*%#!-,(1#!
%$#!A!('7,/%1),$!;,()?,$10/#!C2!0%1(#&#$1!3)12!%$!#==#1!)$011#$3%!3#!/0!&,$3)0/)-01),$!.,$@%6%'!M!/0!
.)7)/)-01),$!$%&'()*%#8!>$!4;'$,&5$#!$,%7#0%!)$)1)'!40(!/#-!9$3)6$'-!,%!#$.,(#!/#-!U$,$<&,%-8!!
I'@M2!$,%-!4,%7,$-!,+-#(7#(!*%#!/#-!gKX2!/#-!-<$3).0/)-1#-2!/#-!4(01)*%0$1-2!/#-!01;/51#-!R!!-#!
(#.,$$0)--#$1!0%!&,)$-!0%10$1!M!1(07#(-!/#%(-!.#$1(#!3F)$1'(E1-!.,&&%$-!*%FM!1(07#(-!/#%(-!$01),$-!
(#-4#.1)7#-8!
!
L’abstraction#est#la#cousine#de#la#complexité##
"F)$=,(&01)-01),$2!1#//#!*%#!$,%-!/F07,$-!4(01)*%'#!M!-#-!3'+%1-2!0!.,$-)-1'!M!&,3'/)-#(!/#-!1T.;#-!
('4'1)1)7#-8!g(!/#!7)70$1!$#!-#!&,3'/)-#!40-!40(.#!*%F)/!#-1!#$!.,$-10$1#!'7,/%1),$8!!!
U)$-)2!$,-!,(3)$01#%(-!40--#$1!/#%(!1#&4-!M!&0/!1(0)1#(!.#(10)$-!.0-2!.#!*%)!.('#!3#-!4(,+/5&#-8!"0!
('-,/%1),$!3#!.#-!4(,+/5&#-!=0)1!'&#(6#(!3#!$,%7#0%O!4(,+/5&#-!R!#1!0)$-)!3#!-%)1#8!"0!.,&4/#O)1'!