Thermodynamique Samedi 26 Mai
Page 1 sur 4
DEVOIR DE PHYSIQUE N°8
Durée : Trois heures
Instructions générales :
Les candidats doivent vérifier que le sujet comprend 4 pages.
Les candidats sont invités à porter une attention toute particulière à la qualité de la
rédaction, de l’orthographe et des justifications.
Si, au cours de l’épreuve, un candidat repère ce qui lui semble être une erreur
d’énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons
des initiatives qu’il est amené à prendre.
L’usage d’une calculatrice est autorisé pour cette épreuve.
Les exercices sont indépendants. Elles peuvent être traitées dans l'ordre choisi par le
candidat.
Questions courtes
1°) Enoncer le premier principe de la thermodynamique.
2°) Enoncer le second principe de la thermodynamique.
3°) On étudie un gaz parfait. On note P, V, T les paramètres pression, volume et température
du gaz parfait. On note respectivement Cp et Cv les capacités thermiques molaires à pression
et à volume constant et γ le rapport
v
p
C
C
. R est la constante du gaz parfait.
a) Rappeler l’équation qui lie la fonction d’état enthalpie H à la fonction d’état énergie
interne U.
b) Montrer que Cp Cv = R.
c) Exprimer Cv en fonction de R et de γ.
d) n moles du gaz parfait évoluent de l’état initial caractérisé par P0 et V0 jusqu’à un état
final caractérisé par P1, V1. Montrer que la variation d’énergie interne de ce gaz parfait
au cours de cette transformation peut s’écrire :
10011
VPVP
U
Montrer que la variation d’entropie de ce gaz parfait au cours de cette transformation
peut s’écrire :
)ln(.
100
11
VP
VP
nR
S
Exercice des TD : Modèle de la troposphère
Selon le modèle de l'«Atmosphère Standard Internationale» (A.S.I), on admet que
dans la troposphère (entre 0 et 11 km d'altitude) la température T varie avec
l'altitude z selon une loi de la forme : T = T0 + Az, T0 est la température au
sol et A une constante. L'air est assimilé à un gaz parfait (M = 29,0 g. mol-1).
a) Établir la loi de variation P(z).
b) Application numérique : calculer la température T1 et la pression P1 à 11
km d'altitude. Données numériques :
au sol, t0 = 15,0 °C, P0 = 101 325 Pa; champ de pesanteur uniforme g = 9,80 m.
s-2
dz
dT
= - 6,50 K. km-1 ; R = 8,314 J.K-l.mol-1.
Thermodynamique Samedi 26 Mai
Page 2 sur 4
Problème 1 : Echauffement d’un solide
On considère un solide de masse
=1,0 kgm
, de capacité thermique massique
-1 -1
c = 10 J kg K
, se
trouvant initialement à la température
1273TK
, placé dans une grande quantité d'eau (constituant
un thermostat) à la température T2 = 373 K.
1. Lorsque l'équilibre thermodynamique est atteint :
- quelle est la température du solide ?
- quelle est la temrature du thermostat ?
2. Déterminer la variation d'entropie
solide
S
du solide lors de ce processus, en fonction de
,
c
,
1
T
et
puis faites l'application numérique.
3. Déterminer la variation d'entropie
eau
S
de l'eau lors de ce processus, en fonction de
,
c
,
1
T
et
puis faites l'application numérique.
4. En duire la variation de l'entropie de l'univers
univers
S
, constitué par l'ensemble {solide +
thermostat}, lors de ce processus ; puis faites l'application numérique. Commentez votre sultat.
5. On découpe le processus précédent en une infinité de petits processus au cours desquels on
éve la température du solide de
T
à
TT
(avec
T
«
T
) par contact avec une infinité de
thermostats de températures infiniment proches les unes des autres.
Montrer que, pour une étape intermédiaire, on peut écrire :
ln 1
univers TT
S mc T T T
 

 





En développant ce résultat au deuxième ordre en
T
T
, montrer que
univers
S
est proportionnelle à
2
T
T



. En déduire que ce processus peut être rendu réversible à la limite la variation de
température
T
entre deux thermostats successifs tend vers ro.
On rappelle que, lorsque x « 1
 
²
ln 1 2
x
xx  
   
2
1
11 2
nnn
x nx x
 
Problème 2 : Etude d’un moteur à essence
Thermodynamique Samedi 26 Mai
Page 3 sur 4
Thermodynamique Samedi 26 Mai
Page 4 sur 4
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !