ABC
2π/3
f:R2R+
M7→ f(M) = MA +MB +MC
f P
ABC A, B, C
P f P
ABC0BCA0ACB0
ABC AA0BB0CC0P
f(P) = AA0=BB0=CC0
f
O MA OM OA
f(M)3OM f(O)
f(M)> f(O)OM > (2/3)f(O)OM (2/3)f(O)
f P
f
P ABC
π/2b
Bb
C H
A B C
f(H) = HA +HB +HC =HA +BC < BA +BC =f(B)
f(H)< f(C)f B C
Ab
A < π/2
π/2b
A < 2π/3M
Ab
A= 2α
MB2=AB22AB.AM cos α+AM2
MB =AB AM cos α+O¡AM2¢
M A MC
f(M) = f(A) + (1 2 cos α)AM +O¡AM2¢
0<2α < 2π/3 1 2 cos α < 0f(M)< f(A)M
A f A
f P ABC
P A BC P 0P
P0A < P A P 0B=P B P 0C=P C f(P0)< f(P)
f
{A, B, C}fC+
gradf(P) = (
u+
v+
w)
u=
P A/P A
v=
P B/P C
w=
P C/P C
P
u+
v+
w= 0
1 =
w2= (
u+
v)2= 1 + 2
u .
v+ 1
u .
v=1/2\
AP B = 2π/3\
BP C [
CP A
P AB 2π/3P
A B A C
A P A
f P
ABC
2π/3
AB
AC
B0C A +π/3
M M0AMM0
f(M) = MA +MB +MC =MM0+MB +M0B0=BM +MM0+M0B0BB0
M P M0
P0
³
P A,
P B´=2π
3,³
P P 0,
P A´=π
3
³
P P 0,
P B´=π B P P 0
³
P0B0,
P0A´=³
P C,
P A´=2π
3,³
P0A,
P0P´=π
3
³
P0B0,
P0P´=π P, P 0, B0P P 0
BB0
f(P=BP +P P 0+P0B=BB0
AA0CC0
P
ABC0BCA0CAB0f(P) = AA0=BB0=CC0
ABC b
A2π/3
f
A
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !