X⊂ E X6=∅X
hXiX
hXiX
(A1, . . . , Ak)∈ Ek(A1, . . . , Ak)
M Ai
∃!(λ1,...λk)∈Kk:M=Bar((Ai, λi)) Pλi= 1
(λ1, . . . , λk)∈Kk
M=Bar((Ai, λi)) M∈ E
{Ai}
1/3,1/3,1/3
(A0, . . . , Ak)∈ EkE(−−−→
A0A1,...,−−−→
A0Ak)
E
n+ 1
(A0, . . . , An)EB0, . . . , Bm
Ff:E → F f(Ai) =
Bi∀i f (B0, . . . , Bm)F
A1A2A3
(λ1, λ2, λ3)
σ∈S3Gσ=Bar((Ai, λσi)) Gσσ∈S3
A1A2A3
(A0, . . . , An)EH
Kn+1 Pxi= 1 E → H, A =Bar((Ai, λi)) 7→
(λ0, . . . , λn)
Kn+1
Kn
(P0, . . . , Pn)∈ En
(A0A1A2)
A=Bar((Ai, λi)) B=Bar((Ai, βi)) B6=A M =
Bar((Ai, xi)) (AB)
x0α0β0
x1α1β1
x2α2β2
= 0