Les antineutrinos contredisent-ils la théorie

publicité
Les antineutrinos contredisent-ils la théorie
de la relativité ?
Par Laurent Sacco,
Au cours d’expériences récentes au Fermilab, des antineutrinos ont semblé
se comporter différemment des neutrinos : ils n’oscilleraient pas avec les
mêmes masses. Si une telle différence venait à être confirmée, la théorie de
la relativité restreinte serait ébranlée...
On sait que les trois types de neutrinos connus se transforment les uns dans
les autres, comme le suggérait Bruno Pontecorvo. Le phénomène a été mis
en évidence indirectement en 1998 avec le détecteur Super-Kamiokande et
récemment encore avec le détecteur Opera. Lorsque l’on crée un faisceau de
neutrinos d’un type donné, comme des neutrinos électroniques ou
muoniques, un détecteur placé sur le parcours de ce flux et conçu pour
détecter un seul type de neutrino, verra un déficit en ces particules. C’est
d’ailleurs de cette manière que l’on résout l’énigme des neutrinos solaires.
Créés à l’intérieur du Soleil par les réactions de fusion thermonucléaire
dont il tirent leur énergie, les neutrinos électroniques dont le flux avait été
prédit théoriquement semblaient moins nombreux que prévu lorsqu’on
chercha à les mesurer sur Terre.
Aujourd’hui, des faisceaux d’antineutrinos muoniques sont produits au
Fermilab et sont employés pour deux expériences : Main Injector Neutrino
Oscillation Search (MINOS) et Booster Neutrino Experiment (BooNE).
Il se trouve que les oscillations des neutrinos sont données par des
formules faisant intervenir les différences entre les carrés des masses des
neutrinos. Or, un théorème prouvé d’abord par le prix Nobel de physique
Julian Schwinger en 1951, puis de façon plus rigoureuse et complète en
1954 par Gerhart Lüders et Wolfgang Pauli, implique que les masses des
neutrinos et des antineutrinos doivent être identiques pour chaque type de
neutrinos. Il s’agit du théorème CPT et il repose lourdement sur la théorie
quantique des champs relativistes.
On doit donc s’attendre à ce qu’antineutrinos et neutrinos oscillent de la
même façon. Ce qui semble ne pas être le cas selon les physiciens de la
collaboration Minos !
Il faut en effet savoir qu’en 2002, Oscar Greenberg, un célèbre chercheur
qui a été un des premiers à proposer l’existence de la charge de couleur
pour les quarks, a démontré un théorème aux conséquences profondes en
ce qui concerne la violation de l’invariance CPT.
Ce théorème CPT affirme que pour des particules décrites par une théorie
quantique des champs relativistes, les prédictions que l’on peut faire sur
elles sont invariantes par symétrie CPT. Une expérience doit donc donner
des résultats identiques avec des particules si l’on prend simultanément
son image dans un miroir, inverse le sens de l’écoulement du temps et que
l’on substitue aux particules des antiparticules et vice-versa. En
conséquence de quoi un électron doit avoir la même masse qu’un positron,
un antiquark celle d’un quark, etc.
Or, selon le théorème de Greenberg, si l’on trouvait par exemple une masse
différente pour un neutrino et son antineutrino, cela impliquerait
automatiquement une violation de l’invariance de Lorentz, c’est-à-dire
une violation des prédictions de la théorie de la relativité restreinte
d’Einstein !
Si tel était le cas, un tremblement de terre secouerait le monde de la
physique théorique et c’est pourquoi la majorité des physiciens des hautes
énergies pense certainement que le résultat de Minos ne doit très
probablement être qu’une fluctuation statistique. Plus précisément, il ne
s’agit pour le moment que d’un écart d’environ 2 sigmas, ce qui est donc
encore très insuffisant pour parler d’une découverte.
Toutefois, voila qu’on entend à nouveau reparler de l’expérience
MiniBooNE qui elle aussi semble maintenant mettre en évidence une
différence de comportement entre neutrinos et antineutrinos... mais
toujours pas à un niveau supérieur à 3 sigmas. Il faudrait un effet à 5 sigmas
pour annoncer une découverte...
Téléchargement