Licence de Physique, L3, 2013-2014 - Introduction à la mécanique quantique
Diffusion classique par un potentiel, modèles classiques de Thomson et de
Rutherford de l’atome
En 1909 Geiger et Marsden réalisent une expérience de diffusion de particules alpha par des atomes
d’or. Ils utilisent pour cela un échantillon de radium émettant des particules alpha (noyaux d’hélium
4
2He) qu’ils dirigent vers une feuille d’or très mince. Ils détectent ensuite à l’œil les traces fluores-
centes laissées par les particules alpha sur des écrans de sulfure de zinc et obtiennent le nombre
de particules déviées dans une direction (θ,ϕ)donnée. Les résultats de ces expériences ont montré
qu’une proportion anormalement élevée de particules alpha est diffusée aux grands angles, ils ont
remis en cause le modèle de Thomson de l’atome et conduit au modèle de Rutherford en 1911.
Discussion qualitative de la diffusion en mécanique classique
1.- On envoie une particule de masse met de charge z|e|, d’énergie incidente E, dans une région de
l’espace où règne un potentiel électrostatique φ(r)à symétrie sphérique. La position de la particule
est repérée à l’instant ten coordonnées polaires r(t),ψ(t). Pour la suite, on notera ϕ(t)l’angle
azimutal autour de la direction d’incidence du projectile, θ=πψ()l’angle (zénithal) dans
lequel se produit la diffusion, ψ(t)étant mesuré depuis −∞. Discuter qualitativement la diffusion,
notamment selon que le potentiel d’interaction avec la cible est répulsif ou attractif.
Diffusion d’une particule αpar un atome dans le modèle de Thomson
Dans le modèle de Thomson de l’atome, les électrons (découverts par Thomson en 1898) sont
supposés baigner dans un "gellium" sphérique chargé positivement de façon uniforme (de charge
totale +Z|e|) et constituant l’essentiel de la masse de l’atome. Ce modèle conduit à des électrons
liés élastiquement au sein de l’atome 1.
2.- On néglige totalement la présence des électrons dans un premier temps. Exprimer l’énergie
potentielle répulsive U(r)à laquelle est soumise la particule αincidente à l’intérieur et à l’extérieur
de l’atome de rayon R0. Donner un ordre de grandeur caractéristique de cette énergie en eV.
3.- Discuter qualitativement le rôle joué par les électrons, en particulier le cas simple où la particule
alpha est envoyée avec un paramètre d’impact b>R0. Quid du cas contraire ?
4.- Les particules alpha incidentes proviennent de la désintégration de noyaux lourds et ont une én-
ergie typique de l’ordre de 4 à 5 MeV. Discuter qualitativement la diffusion, commenter l’éventualité
d’une rétrodiffusion.
Diffusion d’une particule αpar un atome dans le modèle de Rutherford
5.- L’atome dans le modèle de Rutherford est assimilé à un noyau lourd supposé ponctuel de charge
Z|e|, entouré d’électrons pour assurer la neutralité. Former une quantité caractéristique homogène à
une longueur, notée a0. Donner sa valeur numérique. Cette quantité représente la distance typique
noyau-électrons.
6.- On envoie une particule αde forte énergie sur cet atome. Commenter la forme de l’énergie
potentielle ressentie par la particule incidente en fonction de la distance, notamment pour un
paramètre d’impact plus petit ou plus grand que a0.
1. Note (wikipedia) : Le modèle de “plum pudding” de Thomson est dynamique. Les électrons sont libres de tourner
dans le gel ou nuage de substance positive. Ces orbites sont stabilisées dans le modèle par le fait que lorsqu’un électron se
déplace loin du centre du nuage de matière positive, il est “rattrapé” par une force d’attraction positive, car il y n’a plus
de matériau de charge opposé dans son orbite. Dans le modèle de Thomson, les électrons sont libres de tourner dans des
anneaux qui sont ensuite stabilisés par des interactions entre électrons, et les spectres devaient être considérés comme des
différences d’énergies entre les différentes orbites des anneaux. J.J. Thomson a tenté de prendre en compte dans son modèle
les principales raies spectrales connues pour certains éléments, mais a échoué. De fait, le modèle de Thomson (avec un
modèle similaire de type anneaux de “Saturne” pour les électrons atomiques proposé par Nagaoka en 1904 après le modèle
de Maxwell pour la description des anneaux de la planète) est l’une des prémices du modèle de Bohr qui lui a succédé.
2
Pour des particules incidentes d’énergies de quelques MeV, quelle forme de potentiel d’interaction
peut-on retenir ?
7.- Limite des fortes énergies : calculer l’angle de déflexion θen fonction du paramètre d’impact b
en évaluant simplement le transfert de quantité de mouvement.
8.- Calcul exact : utiliser les lois de conservation du moment cinétique et de l’énergie pour obtenir
l’expression :
dψ
d r =±L
mr2Æ2
m(EU(r)) L2
m2r2
[1]
Calculer la valeur exacte de θen intégrant l’équation [1]. Les diffusions aux grands angles sont-elles
permises ?
9.- Section efficace de diffusion : on envoie un faisceau incident de flux J(en particules/cm2.s) sur
un centre diffuseur. Le nombre de particules détectées pendant le temps d t dans un angle solide
d2Ω = sin θdθdϕs’écrit
d3N(θ,ϕ) = J d2σd t =Jd2σ
d2d2d t
d2σ
d2(aussi notée σ(θ,ϕ)dans la littérature) est la section efficace différentielle de diffusion,
homogène à une surface et que l’on exprime en barns (1 barn =1028 m2). La section efficace
totale de diffusion est σ=Rd2d2σ
d2. Montrer que
d2σ
d2=b
sin θ
d b
dθ
[2]
et calculer la section efficace différentielle de diffusion dans le modèle de Rutherford.
Analyse dimensionnelle
10.- Retrouver l’angle de déflexion θpour la diffusion de Rutherford par des arguments d’ho-
mogénéité et justifier a posteriori la cohérence du résultat obtenu dans le cas du modèle de Thom-
son.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !