A= 5 −2√9−4 + 5
6÷1
3−1
2+2√52= 5 −2√5 + 5
6÷2−3
6+ 4 ×5 = 5 −2√5 + 5
6÷−1
6+ 20
= 25 −2√5−5
6×6 = 25 −2√5−5 = 20 −2√5
1260 ×0,98 = 1234,8
1200 + 60 ×5 = 1500
1−0,02 ×5 = 0,9 1500 ×0,9 = 1350
1200 + 10 ×60 = 1800
1−10 ×0,02 = 0,8 1800 ×0,8 = 1440
n
1200 + 60n
1−0,02n
R(n) = (1200 + 60n)(1 −0,02n) = 1200 −1200 ×0,02n+ 60n−60n×0,02n
= 1200 −24n+ 60n−1,2n2=−1,2n2+ 36n+ 1200
n= 15
1,7×400
0,45 ≃1510
n= 15 R(15) R(15) = −1,2×152+ 36 ×15 + 1200 = 1470
n= 30
R(n) = 1200 ⇔ −1,2n2+ 36n+ 1200 = 1200 ⇔ −1,2n2+ 36n= 0 ⇔n(−1,2n+ 36) = 0
n= 0 −1,2n+ 36 = 0 −1,2n=−36
n=−36
−12
10
=36
6
5
= 36 ×5
6= 6 ×5 = 30
x
x
AB = 3 AC = 5
BC AC2=AB2+BC2BC2= 25 −9 = 16 BC =√16 = 4
0< x < 4x∈]0 ; 4[