Physique d`Astroparticule 3eme cours

publicité
Physique d’Astroparticule
3eme cours
Jürgen Brunner
CPPM / Luminy
Plan de cours (24 h)
•
•
•
•
•
•
•
19/12/06 (mar)
10/01/07 (mer)
22/01/07 (lun)
25/01/07 (jeu)
31/01/07 (mer)
01/02/07 (jeu)
07/02/07 (mer)
4h
2h
4h
4h
4h
4h
4h
8:00 – 12:00
8:00 – 10:00
8:00 – 12:00
14:00 – 18:00
8:00 – 12:00
14:00 – 18:00
8:00 – 12:00
(JB)
(perdu)
(JB)
EK
EK
temperature of universe
Big Bang
Equilibrium n/p ends
Nucleosynthesis begins
1010 K
Neutral hydrogen forms
universe transparent to light
fossil photon radiation frozen
3000 K
nuclei
100 s
atoms
3 105 y
time after big bang
Description de l’univers
Équation de la relativité générale
Gab : Einstein Tensor - description de la déviation de la
géométrie par rapport à la géométrie Euclidienne
Tab : Énergie/stress Tensor: description de la matière
a,b,µ,ν : indices (0,1,2,3)
κ : constante de proportionnalité, définie par correspondance
avec loi de la gravitation classique
G : constant de la Gravitation
c : vitesse de la lumière
Metriques
Definition de g :
Règles de sommation :
Règles de dérivation :
Metriques-Exemples
∆s 2 = ∆x 2 + ∆y 2
1 0
g µν = 
 Coordonnées Cartésiennes (2-dimensionnel)
0
1

 Courbature 0
1 0 
g µν = 
2
0
x

1 
R2
g µν = 
 0
2
2
2
2
∆s = ∆r + r ∆Φ
Coordonnées Polaires (2-dimensionnel)
Courbature 0
2
2
2
2
2
2
2

∆s = R ∆Θ + R sin Θ ∆Φ
0

2
2
2
R sin x1  Coordonnées Polaires (2-dimensionnel)
Courbature 0
MetriquesEspace/temps Minkowski
xµ = [ x0 , x1, x2 , x3 ]
(relativité restreinte)
x µ = [ x0 ,− x1,− x2 ,− x3 ]
Convention des coordonnées
1 0 0 0 
0 − 1 0 0 

g µν = g µν = 
0 0 − 1 0 


0
0
0
−
1


1
0
µ
gνµ = gν = 
0

0
0 0 0
1 0 0
0 1 0

0 0 1
∆s 2 = g µν x µ xν = g µν xµ xν = gνµ x µ xν
∆s 2 = ∆x02 − ∆x12 − ∆x22 − ∆x32 = ∆(ct ) 2 − ∆x12 − ∆x22 − ∆x32
Einstein tensor
Tenseur de Riemann
Tenseur de Ricci
bc
abcd
R = g ad R
Tenseur d’Einstein
Scalaire de Ricci
R = g ab
ab
R
Tenseur d’énergie/tension (angl.stress)
T00 = densité d’énergie
T0i = flux d’énergie
= Quantité de mouvement
Tii = flux de quantité de de mvt
(stress ou pression)
Tij = shear stress
Courbature d’espace/temps
Distribution de la matière (aussi : radiation, énergie etc)
déforment l’espace/temps
Visualisation pour un monde 2-dimensionnel
La constante cosmologique
Problème:
Cette équation n’a pas de solutions stables.
L’univers stationnaire n’est pas possible.
Explication naïve: force gravitationnelle est toujours positive,
chaque distribution de masses initiales s’effondra (par attraction)
Version modifiée
Elle permet des solutions stationnaires mais instables dés lors
qu’on s’écarte de l’état d’équilibre
Λ : constante cosmologique peut être vu comme “pression du
vacuum, qui contrebalance la force gravitationnelle
Model d’univers
Conditions basées sur observations et/ou des arguments philosophiques
L’univers est homogène, ça veut dire invariant par translation,
“il n’y a pas d’endroit particulier”
(Ex.: structure cristalline )
L’univers est isotrope, ca veut dire invariant par rotation
“dans tous les directions on voit la même chose”
(Ex.: on imagine des sphères concentriques contenues les unes
dans les autres )
La structure visible aujourd'hui est la résultat des petits
fluctuations primordiales
Friedman-Lemaitre-Robertson-Walker metrique
Solution pour l’univers decrit au-dessus
a(t) : paramètre d’échelle, décrit l’évolution du taille d’univers
k = -1,0,1 : type de la géométrie (hyperbolique, plat, sphérique)
H : taux d’expansion
Acceleration d’expansion
ρ : densité de la matière
Hubble 1920-1930
– Measure of red shift for many
distant galaxies
– Conclusion:
– the Universe expands !
– galaxies receding the faster the
further they are
Redshift
Hubble’s law
Today: H0 = 71 ± 4 (km/s) / Mpc
Slope = H0 (Hubble constant)
Once upon a time...
our Universe was smaller
Primordial singularity !!!
=> BIG BANG
How far in time ?
•
Extrapolating backwards the present expansion speed
towards the big bang
T 1/H0 ~ 14 billion years
(note that the present best estimate, with a lot of
complicated physics inside, is T = 13.7 ± 0.2 Gyr)
•
Consistent with the age of the oldest stars
Implosion
Implosion
du
ofnoyau
core of
d€’étoile
red giant
Explosion
Explosion of star
d€’étoile
Expansionduof
matter
Expansion
matière
shock
wave⇒∼ accélération
0.5 c
onde
de choc
Hubble law in 2003: supernovae
Supernova
Supernova
Supernova
Remnant
Restes
du Supernova
SNIa occurs at Chandra mass, 1.4 Msun ⇒ ‘Standard Candle’
measure brightness
→ distance: B = L / 4π
π d2
measure host galaxy redshift → get recession velocity
test Hubble’s Law: v = H d, at large distances
effective magnitude → brightness → distance
Expansion with Supernovae Ia
Acceleration of
universe expansion
non-linear v = H(t) d
redshift → recession velocity
Deviation from Hubble’s law
The expansion accelerates
ΩΛ ~ 0.7
Time & temperature (=energy)
• Once upon a time, our Universe was hotter
– Expansion requires work (and this is the most
adiabatic expansion one can imagine, so the
work comes from internal energy)
15 9
T ~ 10 K
t
γ ↔ particles+antiparticles
γ ↔ proton-antiproton
γ ↔ electron-positron
(…)
then matter became stable
Two epochs
Time
Decoupling
Energy versus temperature
• L’univers peut être décrit comme corps
incandescent
Spectre typique comme
mesure dans les lampe
Dépendance de la température
du longueur d’onde
Formule du Planck – début de la théorie
quantique
E=hν
Relation entre énergie et fréquence pour photons
k–
constante de Boltzman
E ~ kT relation entre energie et temperature dans un gas ideal
Back to thermal history
Density perturbations (inflation?)
t = 10-35 s
t ~ 2000 yrs
t ~ 300000 yrs
Matter domination
Recombination: p+e- → H+γγ
Matter:
Gravitational collapse
Photons:
Free propagation
observable
obs
ble
a
v
er
Galaxies, clusters
CMB
End of opaque Universe
Cannot
see
further
back
Multiple scatterings of
γ on e- produces “thermal”
spectrum at T = 3000 K
(z ~ 1100 = a0 / arec)
“Uniform” background at
T0 = 2.7 K
Discovery
Discovered in 1965
as “excess noise”
(Noble Prize in 1978)
25 years later
Bell Labs
COBE
1992
Bell Labs
Wilson
Penzias
(+ Robert Dicke)
COBE project 1990-1994
George F. Smoot
John C. Mather
Nobel prize 2006
"for their discovery of the blackbody
form and anisotropy of the cosmic
microwave background radiation".
COBE-IRAS spectrum
Excellent accord avec
formule de Planck
L’univers est un corps
incandescent beaucoup
plus précise que une
lampe ordinaire
COBE-IRAS spectrum
Déviation du theorie au niveau 10-3 seulement
COBE sky maps
T = 2.7 K
∆T = 3.4 mK
(after subtraction of constant emission)
∆T = 18 µK
(after subtraction of dipole)
COBE sky maps
scale 0-4 K: very isotrope
→ cosmological origin
Yet, regions > 1° apart never
in causal contact
z
t LSS
103 x 3.105
θLSS ~
rad ~1°
9
14.10
Inflation ?
t now
COBE sky maps
Doppler effect due to motion
of Earth w.r.t. CMB
(v = 370 km/s towards Virgo)
Anisotropies : potential wells
Early seeds for structure
formation?
(+ foregrounds)
Anisotropies
• Before recombination, Universe = plasma of free e- and protons
• Presented as a
power spectrum
cosmology
l(l-1)Cl (power)
• Oscillations due to opposite effects of
- gravity
- pressure
l ~ 200/θθ (deg)
Max. scale of anisotropies
Limited by causality (remember?) → maximum scale
⇒ Max scale relates to total content of Universe Ωtot (= ΩM+Ω
ΩΛ)
2nd generation satellite
COBE
(7 degree resolution)
WMAP
(0.25 degree resolution)
(l < 20)
(l < 700)
WMAP
WMAP on its way to L2
Back to back
primary mirrors
shield
• Very low temperature signal
⇒ Need shielding from
Sun, Earth, Moon, (Jupiter)
• Lagrange point L2: position
of co-rotation with Earth
⇒ Stability of conditions
• Measure of T differences
• 5 frequency channels
Foreground removal (<
<90 GHz)
Launch: Jun. 2001
First results: 2003
Cosmological parameters
Ω b h2
Ω m h2
h
…
ns
σ8
= 0.0223 +/-0.001
= 0.13 +/-0.01
= 0.73 +/- 0.03
…
= 0.95 +/- 0.02
= 0.74 +/- 0.06
Typically ± 5-10%
+ H0 from HST
Ωm
= 0.24 +/- 0.04
= 0.72 +/- 0.04
ΩΛ
Beyond WMAP
- More frequency channels
- Improved resolution
20 GHz
70 GHz
30 GHz
90 GHz
40 GHz
Weighted
sum
background removal
Planck
- Freq coverage from 30 to 850 GHz
(9 channels)
- Polarization sensitive
- Launch foreseen spring 2008
temperature of universe
Big Bang
Equilibrium n/p ends
Nucleosynthesis begins
1010 K
Neutral hydrogen forms
universe transparent to light
fossil photon radiation frozen
3000 K
nuclei
100 s
atoms
3 105 y
time after big bang
Which elements ?
H
Li Be
BBN
Elements
METALS
He
Age < 1s, T > 1 MeV
Collisions maintain thermal equilibrium
Proton - neutron conversion
Maxwell-Boltzmann distribution :
2
N ∝ m3/2 exp - mc
kBT
n N (neutron)
=
~ e −∆mc2/kT ~ 1
p
N (proton)
(∆m = 1.3 MeV)
n
→ 0 as T → 0 BUT freeze-out
p
n-p freeze-out
- Weak reaction n ↔ p rate:
Γweak = nσ
σ|v| ∝ GF2 T5
- Expansion rate:
.
H = a/a ∝ ρ1/2
so H ∝ g* 1/2 T2
(n ∝ T3 and σ ∝ GF2 T2)
with ρ ∝ g* T4 (Stefan’s law)
3
- Freeze-out when Γweak ~ H with
Γweak ~ 
Τ

H
0.8 MeV
⇒ drop-out of equilibrium at T ~ 0.8 MeV
n
= e −∆m/kT = e
p
-(1.3 MeV / 0.8 MeV)
~ 0.2
Deuterium bottleneck
-
nB small ⇒ 2-body reactions only
-
Formation of D
-
Binding Energy (D) = 2.2 MeV
nB / nγ ~ 10-10
γ energy
distribution
⇒ D photo-disintegrated
Tail of high energy photons prevents
formation of Deuterium until T ~ 0.1 MeV
E
t=1-3 mn, T=0.3-0.1 MeV
- neutron decay:
⇒ n/p ~ (n/p)0 e-(∆∆t/ττ)
n/p ~ 1/7
- Deuterium (all n):
- Helium (all D ie. all n + equal number of p):
2n
Helium abundance ~
~ 0.25
n+p
H abundance ~ 0.75
η = nB/nγ ➚ ⇒ D bottleneck lasts less ⇒ n/p ➚ ⇒ He ➚
pp-I
pp-II
pp-III
3He
1H
2H
4He
7Be
8Be
6Li
7Li
Heavier elements - BBN
No A=5, A=8 stable nuclei
+
2-body reactions only
Li5 → He4+p
He5 → He4+n
Be8 → He4+He4
BBN essentially STOPS at He4
Trace amounts of 3Li7, 4Be7 :
He4+H3 → Li7+γγ
He4+He3 → Be7+γγ
Be7 +γγ → Li7+p
Heavier elements - Stars
Produced in stars
(high densities ⇒ triple alpha reactions allowed)
Spread in ISM by SN explosions
Crab nebula (SN II)
Origin of elements
formed in:
Big Bang Nucleosynthesis
Hot stars
Supernova explosions
Cosmic-ray interactions
on inter-stellar medium
Observational constraints
- Stars are net producers of He4 and metals
⇒ use metal poor stars
upper limit on primordial abundance of He4 (and on η)
- D weakly bound
⇒ measure in ISM
lower limit on primordial abundance of D (upper limit on η)
- D burnt to He3 and He3 produced by stars
⇒ D+He3 increases with time
upper limit on D+He3 ie lower limit on η
- Li7 very fragile, burnt in stars
⇒ use old metal poor stars, require Li6 (more fragile)
Abundances
Observational concordance
Agreement of abundances
over 10 orders of magnitude
⇓
Major success of Big-Bang
CMB: nγ = 411 cm-3
η = nB/nγ = (4±
±1).10-10
nBmB
ΩB = ρ B =
2
πG
ρc 3H /8π
η
ΩB h702 ~ 0.04
BBN and neutrinos
H ∝ g* 1/2 T2 (remember?) where g* includes relativistic ν’s
He mass fraction
so Nν ➚ ⇒ H ➚ ⇒ sooner freeze-out ⇒ n/p ➚ ⇒ He4 ➚
upper limit
on He4
Nν = 3
LEP and light neutrinos
Nν = 2.994 ± 0.012
Matter/Energy in the Universe
Ωtotal = ΩΜ
matter
+
ΩΛ
∼1
dark energy
Matter:
ΩΜ = Ωb + Ων + ΩCDM ∼ 0.27
baryons neutrinos cold dark matter
Baryonic matter :
Ωb ∼ 0.04
CDM
Cold Dark Matter
Dark Baryons
stars, gas, brown dwarfs, white dwarfs
Neutrinos:
Ων ∼ 0.003
if Μ(ν) ∼ 0.1 eV
Cold Dark Matter :
ΩCDM ∼ 0.23
WIMPS/neutralinos, axions, …
Luminous Stars
Neutrinos
Radiation
Dark Energy
Dark Energy
Téléchargement