TD10 : Modules de type fini sur un anneau principal

Z
Z/4ZZ/8ZZ/6ZZ/18ZZ/7Z.
n1u1unZn
QnMZn
u1, ..., unMZn
u1, ..., un
MZ3u1= (2,1,1) u2= (1,2,1)
u3= (1,1,2) Z3/M
(ui,j)1in,1jnui,j = 2
i=j ui,j = 1 u1un
MZnu1, ..., un
Zn/M
Z/(n+ 1)Z
ZMZ4
(2,1,0,0) (1,2,1,1) (0,1,2,0) (0,1,0,2)
Z4/M
(Z/2Z)2
ZMZ3(4,8,16)
(1,5,10) (6,2,4) (5,8,6)
Z/40Z
Z35x+7y+35z= 0
Z
Z3x+ 2y+ 3z0
mod 4
Z/4Z
C[[X]] C[[X]]2
((1 X)1,(1 X2)1) ((1 + X)1,(1 + X2)1)
C[[X]]/(X2)
ZM N Z2
(e1, e2)Z2
a, b, c, d (ae1, be2)M(ce1, de2)
N
Z[i]
Z[i] 3
5 9
Z[i]Z[i]M
M
=
n
M
r=1
Z[i]/(zr)
zrZ[i]r z1|z2|...|zn
|M|=|z1...zr|2Z[i]
Z[i]Z[i]/(2 + i)
Z[i]/(2 i)Z[i]Z[i]/(3)
Z[i] 53·64
Z[i]M
M
=
n
M
r=1
m
M
s=1
(Z[i]/(zs
r))ar,s ,
z1, ..., znar,s 0
|M|=Qr|zr|2sar,s Z[i]
π2|π2|2= 2
p1 mod 4 πpπ0
p
p
p3 mod 4 πpp2
53·64= 24×34×53
5×2×(4 + 4 + 2) = 100
p
Z/pZ Z[i]a
b p =a2+b2
A A
A
A I A A
a1, ..., anA I = (a1, ..., ar)I A
A
x, y I A
yx xy = 0 I
A M ∈ Mm,n(A)
P∈ Mm(A)Q∈ Mn(A)
P MQ
d10 0 ... 0... 0
0d20... 0... 0
0 0 d3... 0... 0
...
0 0 0 ... dr... 0
...
0 0 0 ... 0... 0
d1, ..., drA d1|d2|d3|...|dr
MGLn(A)P∈ Mn(A)
P M =
1 0 ... 0 0
0 1 ... 0 0
0 0 ... 1 0
0 0 ... 0 (M)
.
GLn(A)
SLn(A)
A n NS(A, n)
A n
XS(A, n)nA X
S(A, n)S(A/nA, n)
mNNNmn= 1
S((Z/mnZ)N, mn)S((Z/mZ)N, m)×S((Z/nZ)N, n)
S(Z2,2)
S(Z2, n)
XS(Z2, n)X(Z0) = aZ0Z2
a n |S(Z2, n)|=Pa|na
Pr0|S(Z2, pr)|TrPn1|S(Z2, n)|ns
S(Z3, n)|S(Z3, n)|=
Pab|na2bPr0|S(Z3, pr)|Tr
Pn1|S(Z3, n)|ns
p V0Z Z2=ZZV1
Zp V0
V1p+ 1
V1V1V2p
V2p+1
V0
V1Z2
Zn0
V1
=ZnV1Z2V1
=Z2
V2p+ 1 V2∈ V2V0
mNV2=mV0[V0:V2] = m2= [V0:V1][V1:V2] = p2
V2=pV0V2V0
Tp={Z Z2p}/( )
v v0
V V 0v v0V
p V 0
vv0
v0v
vv0V V 0
v v0V p V 0
pV 0V[V:pV 0] = [V0:pV 0]
[V0:V]=p v0v
Tpv v0Tp
V(0) V(n)v v0
V(i)1in1V(0) V(1)
· · · V(n)V(i+1) p V(i)i
V(0) W v v0m0
V(0) pmV0V0=pmW
V0V(0) V0=V(0) V(0) 6=V0
V(0)/V 0
V(0)/V 0
=
k
M
i=1
Z/priZ.
p V(0)
V(1) p V 0V(1) 6=V0
V(1) V(2) p V 0
V(i)1in
V(0) V(1) ⊇ · · · ⊇ V(n)V(n)=V0V(i+1) p V(i)
i
(e1, e2)V(0) a, b > 0V0=
paZe1pbZe2
V(0) pZe1Ze2p2Ze1Ze2... paZe1Ze2paZe1pZe2... V0.
v0, v1, . . . , vn1, vn=v0vivi+1
n= 0 n2 1 in1
vi+1 =vi1
n > 0v w d(v, w)
v w r n d(v0, vr) =
maxid(v0, vi)
V0Vrv0vr(e1, e2)V0Vr=Ze1paZe2
a > 0d(v0, vr) = a
VrZe1pa1Ze2Vk,a = (e1+
bpae2)Zpa+1Ze2b∈ {0, ..., p 1}vk,a
Vk,a d(v0, vk,a) = a+ 1 vr1vr+1
Ze1pa1Ze2vr1=vr+1
A B |A[n]|=|B[n]|
n > 0A B
1 / 10 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !