MPRI, Fondations mathématiques de la théorie des automates

MPRI, Fondations math´ematiques de la th´eorie des automates
Olivier Carton, Jean-´
Eric Pin
Examen du 3 f´evrier 2008. Dur´ee: 2h 30, notes de cours autoris´ees
⋆⋆⋆
Avertissement : On attachera une grande importance `a la clart´e, `a la pr´ecision et `a
la concision de la r´edaction.
On rappelle qu’un langage Lde Aest commutatif si, pour tout a, b Aet x, y A,xaby L
entraˆıne xbay L, ce qui revient `a dire que son mono¨ıde syntactique est commutatif.
Le elange de deux mots uet vest le langage uXvform´e des mots u1v1u2v2··· ukvko`u
k>0 et les uiet les visont des mots Atels que u1u2···uk=uet v1v2···vk=v. Par exemple,
ab Xba ={abab, abba, baba, baab}.
Par extension, le m´elange de deux langages Ket Lest le langage
KXL=[
uK,vL
uXv
On admettra sans d´emonstration que le elange est une op´eration commutative et associative,
distributive par rapport `a l’union.
M´elange et langages commutatifs
Si Mest un mono¨ıde, on note P(M) le mono¨ıde des parties de M, muni du produit suivant:
si Xet Ysont des parties de M,XY ={xy |xXet yY}.
Question 1. Soient η1:AM1et η2:AM2les morphismes syntactiques de deux
langages L1and L2. Soit µ:A→ P(M1×M2) le morphisme d´efini, pour chaque aA, par
µ(a) = {(η1(a),1),(1, η2(a))}. Montrer que µreconnaˆıt L1XL2.
Question 2. En eduire que si L1et L2sont reconnaissables, L1XL2l’est ´egalement et que si
L1et L2sont des langages commutatifs, L1XL2l’est ´egalement.
On note [u] la fermeture commutative d’un mot u. Par exemple,
[abab] = {aabb, abab, abba, baab, baba, bbaa}.
Question 3. Soint uAet BA. Montrer que BX[u] est l’ensemble des mots vtels que
|v|a>|u|asi aBet |v|a=|u|asi a /B. En d´eduire que les langages de la forme BX[u]
sont `a la fois sans-´etoile et commutatifs.1
Question 4. Montrer qu’un langage est `a la fois sans-´etoile et commutatif si et seulement si il
est union finie de langages de la forme BX[u], o`u uAet BA.
1La proposition 2.8 du chapitre 9 donne une description de ces langages.
1
Question 5. Montrer que l’ensemble des langages sans-´etoile et commutatifs de Aforme la plus
petite alg`ebre de Boole de langages de Aferm´ee par les op´erations L7→ LXa, pour chaque
lettre a.
M´elange et langages non commutatifs
On note Cla plus petite alg`ebre de Boole de langages Lde Atelle que
(1) Lcontient tous les langages de la forme {ab}, o`u aet bsont deux lettres distinctes de A,
(2) Lest ferm´ee par les op´erations L7→ LXa, pour chaque lettre ade A.
La question 5 montre que Ccontient aussi tous les langages sans-´etoile et commutatifs de A.
Question 6. Montrer que Ccontient les langages de la forme {abb}, o`u aet bsont deux lettres
de A.
Question 7. emontrer que Ccontient tous les langages de la forme {u}o`u uest un mot. En
d´eduire que Ccontient tous les langages finis.
Un langage Lest dit valable s’il existe un langage sans ´etoile commutatif Ctel que la diff´erence
sym´etrique LCsoit finie.
Question 8. D´emontrer que Cest l’ensemble des langages valables.
Question 9. V´erifier que les langages valables v´erifient les trois ´equations xω=xω+1,xωy=yxω
et xωyz =xωzy, o`u xest un mot non vide de Aet yet zsont des mots quelconques de A.
On peut emontrer que ces ´equations caract´erisent les langages valables.
M´elange et produit
Dans cette partie, Aesigne un alphabet contenant au moins une lettre, aune lettre de Aet
L1et L2deux langages rationnels de A.
Question 10. emontrer que si L1et L2satisfont l’´equation aω+1 =aω, alors le langage L1L2
satisfait la mˆeme ´equation.
Question 11. emontrer que si L1et L2satisfont l’´equation aω+1 =aω, alors le langage L1XL2
satisfait la mˆeme ´equation.
Question 12. Donner un exemple de langage ne satisfaisant pas l’´equation aω+1 =aω.
Question 13. La plus petite alg`ebre de Boole de langages ferm´ee par produit et par m´elange est
elle ´egale `a l’ensemble de tous les langages rationnels?
2
MPRI, Fondations math´ematiques de la th´eorie des automates
Olivier Carton, Jean-´
Eric Pin
February 3, 2009. Duration: 2h 30.
⋆⋆⋆
Warning : Clearness, accuracy and concision of the writing will be rewarded.
Recall that a language Lof Ais commutative if, for all a, b Aand x, y A,xaby L
implies xbay L, which amounts to saying that the syntactic monoid of Lis commutative.
The shuffle of two words uand vis the language uXvconsisting of all words u1v1···u2v2···ukvk
where k>0 and the uiand the viare words of Asuch that u1u2···uk=uand v1v2···vk=v.
For instance,
ab Xba ={abab, abba, baba, baab}
By extension, the shuffle of two languages Kand Lis the language
KXL=[
uK,vL
uXv
It is known that the shuffle is a commutative and associative operation, which is also distributive
over union.
Shuffle and commutative languages
Given a monoid M,P(M) denotes the monoid of subsets of M, equipped with the following
product: if Xand Yare subsets of M,XY ={xy |xXet yY}.
Question 1. Let η1:AM1and η2:AM2be the syntactic morphisms of the languages
L1and L2. Let µ:A→ P(M1×M2) be the morphism defined, for each letter aA, by
µ(a) = {(η1(a),1),(1, η2(a))}. Show that µrecognizes L1XL2.
Question 2. Deduce from the previous question that if L1and L2are regular, L1XL2is
also regular and that if L1and L2are commutative languages, L1XL2is also a commutative
language.
Let us denote by [u] the commutative closure of a word u. For instance,
[abab] = {aabb, abab, abba, baab, baba, bbaa}.
Question 3. Let uAand BA. Show that BX[u] is the set of all words vsuch that
|v|a>|u|aif aBand |v|a=|u|aif a /B. Deduce that the languages of the form BX[u] are
star-free and commutative.2
Question 4. Show that a language is star-free and commutative if and only if it is a finite union
of languages of the form BX[u], where uAand BA.
2Proposition 2.8 in Chapter 9 gives a description of these languages.
3
Question 5. Show that the set of star-free and commutative languages of Aforms the least [i.e.
smallest] Boolean algebra of languages of Aclosed under the operations L7→ LXa, for each
letter a.
Shuffle and noncommutative languages
We denote by Cthe least Boolean algebra Lof languages of Asuch that
(1) Lcontains all the languages of the form {ab}, where aand bare two distinct letters of A,
(2) Lis closed under the operations L7→ LXa, for each lettre aof A.
Question 5 shows that Calso contains the commutative star-free languages of A.
Question 6. Show that Ccontains the languages of the form {abb}, where aand bare two letters
of A.
Question 7. Prove that Ccontains all languages of the form {u}where uis a word. Deduce from
this fact that Ccontains all finite languages.
A language Lis said to be good if there exists a commutative star-free language Csuch that the
symmetric difference LCis finite.
Question 8. Show that Cis the set of good languages.
Question 9. Show that every good languages satisfies the three equations xω=xω+1,xωy=yxω
and xωyz =xωzy, where xis a nonempty word of Aand yand zare arbitrary words of A.
One can show that these equations characterise good languages.
Shuffle and product
In this section, Adenotes an alphabet containing at least one letter, adenotes a letter of A
and L1and L2are two regular languages of A.
Question 10. Show that if L1and L2satisfy the equation aω+1 =aω, then the language L1L2
satisfies the same equation.
Question 11. Show that if L1and L2satisfy the equation aω+1 =aω, then the language L1XL2
satisfies the same equation.
Question 12. Give an example of a language which does not satisfy the equation aω+1 =aω.
Question 13. Does every regular language belong to the least Boolean algebra of languages
closed under product and shuffle?
4
Solution
Shuffle and commutative languages
Question 1. For each word uA, one has µ(u) = {(η1(u1), η1(u2)) |uu1Xu2}. Suppose
that uL1XL2and that µ(v) = µ(u). Then there exist two words u1L1and u2L2such
that uu1Xu2, and there exist two words v1, v2Asuch that vv1Xv2,η1(u1) = η1(v1)
and η2(u2) = η2(v2). It follows that v1L1and v2L2and vL1XL2. thus µrecognizes
L1XL2.
Question 2. In particular, if L1and L2are regular, M1and M2are finite and thus P(M1×M2)
is also finite. Therefose L1XL2is regular. If L1and L2are commutative, then M1and M2are
commutative and P(M1×M2) is also commutative. Consequently, L1XL2is commutative.
Question 3. Since Band [u] are commutative languages, the language BX[u] is commutative.
Further, BX[u] is a finite union of languages of the form BXvwith v[u]. If v=a1···an,
BXv=Ba1Ba2···BanB. Since Bis star-free, BXvis also star-free. It follows that
every finite union of languages of the form [u]XBis commutative and star-free.
Question 4. Let Lbe a commutative and star-free language. Let ϕ:AMbe its syntactic
morphism, let P=ϕ(L) and let Nbe the exponent of M. Since L=SmPϕ1(m), it suffices to
prove the result for L=ϕ1(m), for some mM. We claim that L=SuF[u]XB, where
B={aA|(a) = m}and
F={uA| |u|6N|A|,ϕ(u) = mand for all subwords vof u,ϕ(v)6=m}.
If uFand w[u]XB, then wuXvfor some u[u] and some vB. Since Mis
commutative, it follows that ϕ(w) = ϕ(u)ϕ(v) = (v) = m. Thus uL. Conversely, let wL
and let ube a minimal subword of win L. By construction, ϕ(u) = mand for all subwords v
of u,ϕ(v)6=m. Further, if |u|>N|A|, then |u|a> N for some letter aA. Therefore, ucan
be written as u1au2for some words u1, u2such that |u1u2|a>N. Since Mis commutative and
ϕ(aN) = ϕ(aN+1), it follows that ϕ(u1u2) = ϕ(u), a contradiction with the definition of u. Thus
|u|6N|A|and uF.
Let vbe the unique word such that wuXv. Since Mis commutative, ϕ(w) = ϕ(u)ϕ(v),
that is m=(v). Since Mis aperiodic and commutative, it is J-trivial and thus (a) = m
for each letter aof v. In other words, vBand w[u]XB.
Question 5. Let Fbe the least Boolean algebra of languages of Aclosed under the operations
L7→ LXa, for each letter a.
Let aA. Then A∈ F and thus AXa=AaA∈ F. Since Fis a Boolean algebra it
contains all the languages of the form B(see Proposition 2.5, Chapter 9). Further, if u=a1···an,
then [u] = a1X··· an. It follows by induction that BX[u]∈ F. Thus, by Question 5, F
contains all star-free and commutative languages.
The same argument shows that the star-free and commutative languages forms a Boolean
algebra closed the operations L7→ LXa, for each letter a.
Shuffle and noncommutative languages
5
1 / 6 100%

MPRI, Fondations mathématiques de la théorie des automates

La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !