formés au sein des bactéries et du phytoplancton (hydropéroxyacides) étaient rapidement dégradés dans nos
conditions expérimentales en cétoacides et hydroxyacides correspondants. L’effet des matrices siliceuses et
carbonatées (milieux minéraux polaires) sur l’efficacité du transfert d’oxygène singulet des phytodétritus vers
les bactéries attachées a également été étudié. Les résultats ont montré que contrairement aux matrices
carbonatées (coccolithes) des coccolithophoridés, les matrices siliceuses (frustules) des diatomées, inhibaient
fortement le transfert de l’1O2 limitant ainsi la photodégradation des bactéries attachées. L’étude des effets de
l’1O2sur la dynamique des communautés bactériennes attachées aux phytodétritus a montré que près de 90%
des bactéries attachées étaient mortes dans une culture d’E. huxleyi en phase stationnaire prolongée et que les
bactéries vivantes étaient dominées par des bactéries pigmentées (Maribacter, Roseobacter, Roseovarius…)
dont la résistance à l’1O2serait liée à leurs fortes teneurs en caroténoïdes. Des analyses en DGGE ont montré
que la diversité bactérienne était affectée par l’irradiation lumineuse. Par ailleurs, des expériences de
chimiotactisme préliminaires semblent indiquer que les bactéries ne seraient pas capables de détecter l’1O2, ce
qui expliquerait alors le fort taux de mortalité bactérienne mesuré sur les phytodétritus. Les résultats obtenus
in situ en mer de Beaufort (Canada) confirment les résultats obtenus au laboratoire notamment au niveau du
stress oxydatif subi par les bactéries associées à la matière organique particulaire.
To understand, characterize and predict the evolution of biogeochemical cycles in relation to climate change, it
is necessary to understand the dynamic of organic matter. In that context, the induction of photodegradative
processesin attached bacteria to phytodetritus and its implications on organic matter transfer in Ocean were
studied. The overall objective of this thesis was to get more insights on abiotic degradation processes on
particulate organic matter, which are still neglected due to the lack of suitable tracers. UV/Visible-light-
induced photosensitization processes are intense during the senescence of phytoplankton cells. These
processes, which mainly involve singlet oxygen (1O2), acted on most of unsaturated lipid components of these
organisms, but also on heterotrophic bacteria associated to phytodetritus. Induced photo-oxidation processes
were studied in the laboratory under controlled conditions using non- axenic senescent cultures of several
phytoplankton strains. In the first part of this work, the monitoring of the cis- vaccenic acid (bacterial marker)
degradation allowed us to confirm the existence of a 1O2 flow from phytodetritus to the attached bacteria and
to highlight a significant correlation between the photodegradation state of bacteria and chlorophyll a
(photosensitizer) concentration in phytoplankton cells. We also demonstrated that photoproducts formed,
within bacteria and phytoplankton (hydroperoxyacids), were rapidly degraded under our experimental
conditions into corresponding ketoacids and hydroxyacids. The effect of siliceous and carbonate matrices
(mineral polar medium) on the efficiency of singlet oxygen transfer from phytodetritus to the attached bacteria
was also studied. Results showed that, in contrast to the carbonate matrix (coccoliths) of coccolithophorids,
siliceous matrix (frustules) of diatoms, strongly inhibited the transfer of 1O2, thus limiting the
photodegradation of attached bacteria. The study of the effects of 1O2 on the dynamics of bacterial
communities attached to phytodetritus showed that nearly 90% of attached bacteria were killed in aculture of
E. huxleyi in late stationary phase and showed that living bacteria were dominated by pigmented bacteria
(Maribacter, Roseobacter, Roseovarius...), whose resistance toward 1O2results likely from their high
carotenoid contents. DGGE and lipid tracer analyses showed that bacterial diversity was significantly affected
by light irradiation. In addition, preliminary chemotactism experimentssuggested that bacteria would not be
able to detect 1O2,this lack of repulsive effect could explain the high rate of bacterial mortality measured on
phytodetritus. In situresults obtained in the Beaufort Sea (Canada) allowed to confirm that bacteria associated
to strongly photooxidized planktonic material with organic matter particlesare strongly affected by
1O2damages.