Télécharger le fichier - Les math en secondaire 1 avec Mme

Panorama 5
Unité 5.5
Multiplication de fractions
Lorsque l’on multiplie deux nombres entiers, nous pouvons utiliser une représentation visuelle
pour s’aider.
o Exemple : voici la représentation de 3 x 2 :
Pour avoir la réponse, il suffit de compter le nombre de carrés qui sont dans les
colonnes du 3 et en même temps dans les rangées du 2. Dans ce cas-ci, il s’agit de six
carrés. La réponse à 3 x 2 est donc 6.
Représentation : Nous pouvons faire le même raisonnement avec une multiplication de
fractions.
o Exemple : la moitié de trois quarts qui signifie
:
On obtient donc
Par contre, il faudrait trouver une manière plus rapide que de dessiner une
représentation visuelle à chaque fois que nous voulons multiplier deux fractions…
Algorithme : Pour multiplier deux fractions, il suffit de multiplier les nombres du
numérateur ensemble et ceux du dénominateur ensemble.
o Exemple :
Le petit « de » : Ce mot signifie que nous devons effectuer une multiplication.
o Exemple 1 :
de 
Il faut donc effectuer l’opération suivante :






o Exemple 2 :
de 72
Il faut donc effectuer l’opération suivante :




Exponentiation
Il arrive que des fractions entières soient affectées d’un exposant. Dans ce cas, il suffit de
multiplier la fraction par elle-même aussi souvent que l’exige l’exposant.
o Exemple :

Simplification
Une fois la multiplication effectuée, il faut réduire la fraction afin d’obtenir la fraction
irréductible. Par contre, il est parfois difficile de savoir par quoi simplifier et le processus peut
être assez long. Cependant, avec la multiplication de fractions SEULEMENT, il est possible de
simplifier AVANT de multiplier.
o Exemple 1 :








o Exemple 2 :





o Exercice 1 :
o Exercice 2 : 75% de
Analyse
Lorsque tu dois effectuer une multiplication, il est possible d’évaluer, avant de faire le calcul,
l’ordre de grandeur de la réponse.
Multiplicande plus petit que 1 ou que 100% : la réponse sera plus petite que la valeur
de départ, car on ne prend qu’une partie de ce nombre.
o Exemple 1 :
de 800 $ donnera un montant inférieur à 800 $
o Exemple 2 : 25% de 440 km donnera une distance inférieure à 440 km
o Exemple 3 : 
des 360 élèves donnera un nombre d’élèves inférieur à 360
Un même calcul peut se faire de plusieurs manières; certaines étant plus rapides que
d’autres.
o Exemple 1 :
de 800 $
OU

       
o Exemple 2 : 25% de 440 km (on sait que 25% =
)

  km
o Exemple 3 : 
des 360 élèves (on sait que 
% =
)

    élèves
Multiplicande plus grand que 1 ou que 100% : la réponse sera plus grande que la valeur
de départ, car on prend le nombre au complet plus une autre partie.
o Exemple 1 :
de 33 $ donnera un montant supérieur à 33 $




o Exemple 2 : 200% de 25 km donnera une distance supérieure à 25 km

     km
Pourcentage
Calcul mental : Lorsque vient le temps que calculer le pourcentage d’un nombre, il
existe certains trucs nous permettant d’y arriver plus rapidement et facilement.
Nous avons vu que lorsque l’on multiplie ou divise par une puissance de 10 (10, 100,
1 000, …), il suffit de déplacer la virgule vers la gauche ou la droite selon le nombre de
zéros de la puissance de 10.
Ainsi, 10% correspond à 
 qui donne
 une fois réduit. Donc, on n’a qu’à diviser le
nombre par 10 et ainsi déplacer la virgule vers la gauche d’un bond.
o Exemple 1 : 10% de 780 $ donnera 78 $
o Exemple 2 : 10% de 345 km donnera 34,5 km
En utilisant cette intéressante découverte, il est très facile de calculer d’autres
pourcentages : 20%, 30%, etc.
o Exemple : 80% de 60 $
      
Rabais : Dans certaines situations d’achats, on peut arriver à la caisse et obtenir un
rabais sur un ou des articles. Voyons voir comment aborder cette situation.
1 / 8 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans l'interface ou les textes ? Ou savez-vous comment améliorer l'interface utilisateur de StudyLib ? N'hésitez pas à envoyer vos suggestions. C'est très important pour nous!