1 Ba MVABP 18 octobre 2002
PhG-Maths
DEVOIR DE SCIENCES PHYSIQUES
I- Un solide est lancé verticalement vers le haut avec la vitesse initiale v0.
Le solide s'élève à une hauteur h = 5 m avant de redescendre.
Les frottements sont négligés ; le système isolé conserve son énergie mécanique.
1- Écrire les expressions de l'énergie cinétique, de l'énergie potentielle et de l'énergie mécanique à
l'instant initial (au niveau de référence).
2- Écrire les expressions de l'énergie cinétique, de l'énergie potentielle et de l'énergie mécanique à
l'instant final (à une hauteur de 5 mètres).
3- Avec quelle vitesse le solide fut-il lancé ?
4- Quelle serait la vitesse de lancer pour un solide de masse double ?
(pour atteindre la même hauteur avant de redescendre)
II- Un volant en fonte réduit à sa jante, de rayon R = 2 m et d'épaisseur e = 22 cm, est soumis à un
couple de moment constant.
Au bout de 3 secondes de rotation, la fréquence de rotation N du volant est de 6 tr.s 1.
La masse volumique de la fonte est = 7200 kg.m 3.
Le moment d'inertie J d'une jante homogène en rotation autour de son axe de symétrie est donné
par la relation J = m R 2.
1- Calculer la masse m du volant.
2- En déduire le moment d'inertie J du volant (préciser l'unité).
3- Calculer la vitesse angulaire du volant après 3 secondes de rotation.
4- On considère J = 79,62 10 3 kg.m 2, calculer l'énergie cinétique EC acquise en 3 secondes.
5- Déterminer l'angle balayé en 3 secondes.
6- Quel est le moment M du couple moteur sachant que le travail du couple est égal à l'énergie
cinétique du volant ?
7- Combien de temps, après le départ, la fréquence de rotation sera-t-elle de 20 tr.s 1 ?
(le moment du couple moteur est constant)
Formulaire : EC = 1
2 m v 2 EC = 1
2 J  P = M  W = M W = P t
m = V A = R 2 = 2 N = t
Données : g = 9,81 m.s 2
1 Ba MVABP 18 octobre 2002
PhG-Maths
Correction du DEVOIR DE SCIENCES PHYSIQUES
(1 point pour les unités)
I- Solide lancé verticalement à une hauteur de 5 m avant de redescendre
1- (1 point) à l'instant initial : h = 0 m d'où EP = 0
(1 point) v = v0 d'où EC = 1
2 m v02
(1 point) L'énergie mécanique a pour expression : Em = 1
2 m v02
2- (1 point) à l'instant final : h = 5 m d'où EP = m g h
(1 point) v = 0 m.s 1 d' EC = 0
(1 point) L'énergie mécanique a pour expression : Em = m g h
3- (2 points) Le système est conservatif ; l'énergie mécanique est constante
On égale les deux expressions initial et final : 1
2 m v02 = m g h
Ce qui donne : v02 = 2 g h ou encore v0 =
hg2
A.N. : v0 =
581,92
soit v0
9,90 m.s 1
4- (1 point) L'expression de la vitesse est v0 =
hg2
; elle est indépendante de la masse.
La vitesse de lancer aura la même valeur quelque soit la masse du solide lancé.
En revanche l'énergie ne sera pas la même ; elle sera doublée si la masse est double.
II- Volant en fonte R = 2 m e = 22 cm Couple moteur constant
à t = 3 s N = 6 tr.s 1 fonte = 7 200 kg.m 3
1- (1 point) V = R 2 e V
2,7646 m 3
(1 point) m = V m
19 905 kg
2- (1 point) J = m R 2 J
79,62 10 3 kg.m 2
3- (1 point) = 2 N = 12 rad.s 1
4- (1 point) EC = 1
2 J 2 EC
56,58 10 6 J
5- (1,5 points) = t = 36 rad
6- (1,5 points) On a : EC = W d' WC = M = EC d' M = EC
A.N. : M =
Error!
soit M
500 10 3 N.m
7- (2 points) Le moment du couple moteur est constant ; l'accélération du volant est donc constante.
La fréquence de rotation acquise est proportionnelle à la durée de la rotation.
On dresse le tableau de proportion puis on écrit la proportion :
durée
t
3
t = Error! soit t = 10 s
fréquence de rotation
20
6
1 Ba MVABP 18 octobre 2002
PhG-Maths
autre méthode
On a : EC = W d'où 1
2 J 2 = M soit
= J 2
2 M et
= J
2 M
Avec = t, on obtient l'expression de t suivante : t =
L'expression de la durée t devient : t = J
2 M
et avec = 2 N, l'expression devient : t = J 2 N
2 M soit t = J N
M
A.N. : t =
Error!
d'où t
10 s
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !