2 Solutions électro..

publicité
Chap 2  :
I]
1)
SOLUTIONS ELECTROLYTIQUES
1ère S
Solide ionique - Solution électrolytique.
Solide ionique.
Un solide ionique est une espèce  solide constituée d'anions et de cations. Il est électriquement neutre.
Ex : chlorure de sodium : Na Cl
fluorure de calcium : CaF2
 Un solide ionique est un isolant électrique car les anions et cations, porteurs de charges, sont fixes.
 La cohésion d'1 solide ionique est assurée par des interactions électriques entre anions et cations (loi de Coulomb). Les attractions
entre ions de même nature sont maxi et ions antagonistes, mini. Chaque anion a pour proches voisins des cations et vice-versa.
 Les ions sont empilés selon une structure régulière constituée du moins de vide possible.
2)
Dissolution dans l'eau d'un solide ionique.
Une solution aqueuse ionique est constituée d'anions et de cations dispersés et en mouvement parmi les molécules d'eau. Ces
solutions sont électriquement neutres. Appelées également solutions électrolytiques, elles conduisent le courant électrique car
les porteurs de charge(s) y sont mobiles.
A la dissolution dans l'eau d'un solide ionique est associée une réaction  et donc une équation .
NaCl (s)  Na+ + ClNa2SO4 (s)  2 Na+ + SO42Rq :  des solides ioniques insolubles dans l'eau MgO (s), AgCl(s), BaSO4(s), … L'attraction entre anions et cations est trop forte
pour envisager une séparation dans l'eau.
3)
Identification d'ions en solution –
Tests par précipitation.
L'apparition d'un précipité atteste de la présence en
solution des ions qui le constituent.
NB : on note désormais l'hydroxyde HO- plutôt que
OH- car la charge électrique est portée par l'atome O.
Le principe d'un test par précipitation est de
mettre en présence en solution des ions qui, ne
pouvant coexister en solution, s'associent pour
former un solide ionique insoluble appelé
précipité.
II]
1)
De l'espèce  moléculaire à la solution électrolytique.
Liaison covalente polarisée.
Dans 1 liaison covalente simple, le doublet d'e- est situé entre les 2 atomes. Parfois, il est + fortement attiré par l'1 des 2 atomes.
Dans ce cas, on dit que cet atome est + électronégatif que l'autre. La liaison est alors appelée liaison covalente polarisée.
Chacun des 2 atomes liés est porteur d'une petite charge électrique appelée charge
partielle. Cette charge est négative pour l'atome le + électronégatif, on la note -. Elle est
positive pour l'autre et notée +.  souvent < 1,6  10-19 C.
Ex : molécule polarisée H – Cl. L'atome de chlore est + électronégatif que celui
d'hydrogène. On attribue à Cl la charge - et à H, la charge +. Dans ce cas -  0,2 (- e).
Pour un atome, la tendance à acquérir une charge partielle + ou - est la même que la
tendance à devenir un cation ou un anion.
Ex : H situé dans la première colonne donne le cation H+. Au sein d'une molécule il aura presque tjs tendance à devenir H +.
Cl de la famille des halogènes donne Cl-. Dans une molécule, il aura tjs tendance à devenir Cl-.
2)
Molécule dipolaire.
Une molécule est dipolaire :


Si elle présente au moins une liaison covalente polarisée.
Si la géométrie est telle que le barycentre des charges partielles + ne coïncide pas
avec celui des charges partielles –.
La molécule constitue alors un dipôle électrique permanent que l'on note
.
Ex : H – Cl est dipolaire. H2O également car O est + électronégatif que H. NH3, H2SO4 et l'éthanol C2H6O sont également dipolaires.
Le caractère dipolaire de l'eau est mis en évidence par l'XP d'électrisation suivante : une règle électrisée dévie le filet d'eau.
Contre exemples :
3)
- H2, Cl2 sont apolaires car les atomes liés sont identiques.
- CO2, CCl4 sont apolaires même si les liaisons C=O et C–Cl sont polarisées. Barycentres = des q + et -.
- Les molécules constituées uniquement d'atomes C et H sont considérées comme apolaires car C et H ont
pratiquement la même électronégativité.
Dissociation d'une molécule dipolaire.
! Ne pas confondre liquide et solution. L'acide sulfurique pur est un liquide constitué de molécules H 2SO4. Sa solution aqueuse est
constituée d'ions H+ et SO42- et de molécules d'eau.
XP du jet d'eau :
Le solvant dipolaire eau a permis :


La dissolution du gaz +H – Cl- dans l'eau.
La dissociation de ces mêmes molécules en ions H + et Cl-.
HCl (g)  H+ + Cl-
XP 2 : H2SO4, espèce  liquide est constituée de molécules dipolaires qui se dissocient lors de leur dissolution dans l'eau.
H2SO4 (l)  2H+ + SO42Rq : certaines molécules dipolaires ne se dissocient pas dans l'eau : alcool, glucose. Elles sont seulement solubles dans l'eau et la
solution finale sera constituée de molécules de solvant et de molécules de soluté. Il ne s'agira pas d'une solution électrolytique.
Rq 2 : les solvants organiques, comme le pentane, constitués uniquement d'atomes de C et H ne sont pas solubles dans l'eau. De tels
solvants sont constitués de molécules apolaires.
Les espèces  constituées de molécules dipolaires sont en général très solubles dans l'eau.
Les espèces  constituées de molécules apolaires sont très peu solubles voire insolubles dans l'eau.
III]
Solvatation des ions.
La solvatation des ions concerne tous les ions en solution, quelle que soit leur provenance :
solides ioniques ou molécules dipolaires.
1)
Interaction ion – solvant.
Par suite d'une interaction électrostatique ion – solvant, des molécules d'eau orientées,
entourent les ions en solution : c'est le phénomène de solvatation des ions.
NB : + un ion est petit et chargé, + le nombre de molécules d'eau l'entourant en solution .
Ex : Cu2+ solvaté s'écrit Cu(H2O)62+ ou plus simplement cu2+(aq).
L'ion H+ solvaté s'écrit H+(aq) ou H3O+ (ion oxonium).
2)
Importance du phénomène de solvatation des ions.
Pour dissoudre un solide ionique, un solvant doit pouvoir solvater ses ions. Un solvant apolaire ne peut solvater des ions.
IV]
1)
Concentrations.
Concentration molaire en soluté apporté.
m=14, 2 g de sulfate de sodium Na2SO4 sont utilisés pour réaliser 0,50L de solution électrolytique. n = m/M = 14,2/142 = 0,10 mol.
La concentration molaire en soluté, de la solution est c = n / V = 0,1 / 0,5 = 0,2 mol.L -1.
2)
Concentration molaire effective des ions en solution.
L'espèce  sulfate de sodium n'existe plus en solution. La solution contient des ions Na +(aq) et SO42-(aq).
Na2SO4(s)  2 Na+(aq) + SO42-(aq)
État initial
Etat final
x=0
xmax
Na2SO4(s)
0,10
0,10 - xmax
2 Na+
0
2 xmax
SO420
xmax
Si le sulfate de sodium se dissout totalement : xmax = 0,10 mol.
[Na+(aq)] = 0,4 mol.L-1
[SO42-] = 0,20 mol.L-1.
Dans 1 solution ionique, les C effectives des ions présents en solution ne doivent pas être confondues avec la C en soluté
apporté.
NB : pour toute espèce susceptible de se dissoudre dans l'eau, il existe une limite de solubilité au-delà de laquelle la solution est
saturée.
! Dissoudre ne veut pas dire solvater.
Téléchargement