Licence de Mécanique Thermodynamique L305 Durée du contrôle

J:\Philippe\Cours\Licence L3 Thermodynamique L305\Examens\2008 08 L305 DE.doc Page 1/2
Licence de Mécanique
Thermodynamique L305
Durée du contrôle continu : 1h30
Les documents et calculettes ne sont pas autorisés.
Nom : Date :
Prénom :
Section : dossier signature :
Problème N°1 : Etude de l’équilibre d’un système à trois compartiments
Une boite à parois thermiquement isolantes est partagée en trois compartiments A, B,
C par des pistons mobiles sans frottement et adiabatiques, comme le précise la figure 1. Le
compartiment A comporte une résistance électrique chauffante. A l’état initial, chaque
compartiment contient une mole de gaz parfaits monoatomiques à la température T0. A l’état
initial, la résistance chauffante n’est pas utilisée.
On affecte de l’indice 0 les variables thermodynamiques P, V, T correspondant à l’état
initial. Ainsi P0 est la pression dans le compartiment A.
1. Déterminer les pressions des deux autres compartiments B et C, ainsi que les volumes
de chacun.
On apporte une quantité de chaleur dans le compartiment A par effet Joule. Un courant
d’intensité I parcourt la résistance de valeur constante Re, pendant une durée tΔ.
2. Donner l’expression de la quantité de chaleur Q.
Le système atteint un nouvel état d’équilibre caractérisé par les conditions (PA, VA, TA),
(PB, VB, TB), (PC, VC, TC) dans les compartiments A, B, C respectivement.
o On notera que les transformations des compartiments B et C sont adiabatiques
o Que le premier principe peut être appliqué valablement au système total mais
aussi à chaque sous système A, B et C si nécessaire.
Pour résoudre le problème, il est nécessaire de déterminer autant d’équations que
d’inconnues au système. Dans le cas présent, 9 inconnues imposent d’écrire 9 équations.
3. L’état d’équilibre thermodynamique impose un équilibre mécanique, comment se
traduit cet équilibre ?
4. Ecrire les lois des gaz parfaits associées à chaque sous système A, B et C.
5. Traduire l’évolution thermodynamique des compartiments B et C.
6. Traduire la conservation des volumes.
7. Ecrire le bilan d’énergie (1er principe) pour les 3 compartiments.
8. Les 9 relations obtenues amènent alors à la résolution complète du problème. Donner
l’expression de l’ensemble des grandeurs (Pi, Vi, Ti) en fonction de Q, T0 et P0.
9. Faire les applications numériques pour Q et l’ensemble des Pi, Vi, Ti.
Données : T0 = 300 K, P0 = 105 Pa, Cv = 3R/2, γ = 5/3, Re = 45 Ω, t10s
Δ
= et I = 5 A. De
plus, RT0 2500 J.mol-1 et 22/5 4/3.
J:\Philippe\Cours\Licence L3 Thermodynamique L305\Examens\2008 08 L305 DE.doc Page 2/2
Compartiment A
T
A
P
A
V
A
Compartiment B
T
B
P
B
V
B
Compartiment C
T
C
P
C
V
C
Intensité I
Résistance Re Pistons amovibles hermétiques et
adiabatiques
Figure 1 : Schéma de l’installation
Problème N°2 : Transformation élémentaire pour un gaz de Van der Waals.
L’équation de Van der Waals (VDW) est une alternative plus précise de la loi des gaz
parfaits lorsque l’on caractérise le comportement d’un gaz proche du point critique.
Dans ce problème, on cherche à retrouver certaines relations de transformations élémentaires
connues écrites pour le cas des gaz parfaits (évolution isotherme ou adiabatique réversible)
pour un gaz qui suit la loi de Van der Waals.
Expression du travail pour une transformation isotherme
Une mole de gaz, dont le comportement suit l’équation d’état de Van der Waals, voit
son volume passer de V1 à V2 au cours d’une transformation isotherme réversible. On
rappelle que l’équation de VDW peut s’écrire comme suit :
2
a
(P )(V b) RT
V
+−=
Où a et b sont des constantes du gaz considéré. De façon classique, la pression du gaz est
notée P, sa température T et la constante des gaz parfaits R=8.314J/K/mole.
1. Donner l’expression du travail W des forces de pression échangé avec l’extérieur, en
fonction de a , b,R ,V1, V2 et T.
2. Donner l’expression du travail W’ dans le cas du gaz parfait
3. En particulier, exprimer W-W’ lorsque b<<<V. Commenter le signe de W-W’ en
fonction de la température et pour le cas d’une détente ou d’une compression.
Relation pour une évolution adiabatique réversible
4. Donner l’expression dans le cas général de la quantité de chaleur Qδ pour une
évolution infinitésimale réversible en coordonnée (P,V). Déterminer le coefficient
V
P
lT T
⎛⎞
=⎜⎟
⎝⎠
dans le cas du gaz de VDW
5. Dans le cas d’une évolution adiabatique et réversible, déterminer une relation
analogue à PV cte
γ= (cas gaz parfait) pour le cas d’un gaz de VDW. On fera
l’hypothèse que
v
R1
C≅γ.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !