Demande d’allocation – ED Santé, Sciences Biologiques et Chimie du Vivant (SSBCV)
1. Informations administratives :
Nom de l’encadrant responsable de la thèse : Christelle SUPPO
Nom du co-encadrant (co-tutelle) : Sebastian ANITA, Université de Iasi, Roumanie
Unité : UMR CNRS n° 7261, Institut de Recherche sur la Biologie de l’Insecte
Equipe : Ecologie des systèmes multitrophiques et biomimétisme
Email de l’encadrant : [email protected]
2. Titre de la thèse : Les modèles semi-discrets en écologie des communautés, application à
l’étude de l’impact du changement climatique sur les réseaux trophiques
3. Résumé :
Contexte : En biologie, les modèles mathématiques utilisés sont soit continus soit discrets.
Les modèles continus sont utilisés pour décrire les interactions entre différentes entités
impliquant des processus qui apparaissent aléatoirement dans le temps. Les modèles discrets
sont employés quand on étudie des phénomènes qui ne se produisent qu’à des moments
ponctuels (reproduction). Or beaucoup de systèmes biologiques impliquent à la fois des
phénomènes continus et discrets. C’est pourquoi les modèles semi-discrets se sont développés
depuis quelques années.
Ces modèles, appelés aussi modèles hybrides, ont beaucoup d’applications en physique mais
commencent à être utilisés en biologie. Ils comportent une partie continue (équations
différentielles), et une partie discrète (équations aux différences). Quand la partie continue est
linéaire on peut alors expliciter les solutions. Quand les équations différentielles sont non
linéaires, on se place dans des cas particuliers l’analyse est possible ou on résout
numériquement le système.
Les résultats obtenus avec les modèles semi-discrets sont en général différents de ceux
trouvés avec les modèles discrets ou continus. La stabilité du système est changée (de stable à
instable pour les mêmes paramètres). Ces différences sont majeures pour comprendre les
relations multitrophiques et plus encore les réseaux trophiques. Ces nouveaux modèles semi-
discrets ont l’avantage de rendre les équations plus réalistes mais ils nécessitent le
développement de nouveaux théorèmes mathématiques.
Sujet de la thèse : Les modèles existants sont limités à l’exploration de certains traits
d’histoire de vie particuliers, l’objectif de la thèse est de développer un modèle semi-discret
général.
La thèse consistera d’abord à l’écriture et l’analyse théorique de modèles mathématiques
simples. Puis, le but sera double : développer des modèles de plus en plus réalistes, et donc
plus complexes, et faire de nouvelles avancées mathématiques dans l’analyse de ces modèles
semi-discrets.
Considérons un système hôtes-parasitoïdes pour lesquels les phénologies sont perturbées par
le changement climatique. L’impact du changement climatique sur les relations
multitrophiques est alors modélisé par des modèles semi-discrets, tenant compte du timing
relatif des deux entités.
Voici l’évolution de l’hôte et du parasitoïde sur une année :
Sur le stade larvaire, qui est attaqué par les parasitoïdes, l’interaction est continue.
Le modèle s’écrit en 2 parties, sous forme continue et discrète :
1 2
3
1 4
( ) ( )
( )
( ) ( )
dL
g L LP g L L
d
dP g P P
d
dI
g L LP g I I
d
τ
τ
τ
= −
= −
= −
1
1
( , )
( , )
t
t
H L T t
P kI T t
+
+
=
=
L(
τ
,t) densité de larves non parasitées, I(
τ
,t) densité de larves parasitées, P(
τ
,t) densité de
parasites.
Les fonctions de croissance g
2
,g
3
et g
4
peuvent être modifiées suivant si la mortalité des larves
est due au parasitisme ou non, si les parasitoïdes sont spécialistes ou généralistes ou à cause
du changement climatique. La réponse fonctionnelle g
1
(L) peut être linéaire ou non. L’impact
du changement climatique va aussi être sur la fenêtre temporelle [0,T] durant laquelle a lieu le
parasitisme. Cette perturbation peut être aussi bien sur la durée que sur le positionnement de
cette fenêtre.
Dans le but d’étudier les effets cascades, on étendra ce modèle à l’étude de l’impact sur un
troisième niveau trophique, par exemple la plante dans le cas où l’hôte est un herbivore. Dans
ce cas on a des équations supplémentaires.
C’est l’intérêt biologique et/ou l’intérêt mathématique qui détermineront la voie prise pour les
extensions du modèle.
adultes pupes œufs larves pupes
Début année t Fin année t
τ=
0
τ
H
t
adultes
H
t+1
DISCRET
CONTINU
HOTES
PARASITOIDES
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !