ν(xk+1P)−deg(xk+1P)≥ν(xkP)−deg(xkP) + ν(x)−deg(x),
k7→ ν(xkP)−deg(xkP)
δ(x, P ) = lim
k→∞ν(xkP)−deg(xkP)
x, P ∈A
gr(A) = Lk≥0mk/mk+1 A
E[X1, ..., Xn]x∈Agr(x) :=
xmod mdeg(x)+1 ∈gr(A)xgr(p)p
gr(p) = {gr(x), x ∈p}.
gr(A)
gr(p) := M
k≥0
(p∩mk)/(p∩mk+1)⊆gr(A)
δ
x∈A
δ0 +∞δ(x)=+∞ ⇔ gr(x)∈pgr(p)
δ(x) = 0 = +∞P /∈pδ(x, P )<+∞
= +∞
x6= 0 δ(x)=+∞ > 0k0≥0k≥k0
ν(xk)≥(1 + ) deg(xk).
gr(x)∈pgr(p)k0≥1
ν(xk0)≥deg(xk0)+1.
gr(x)∈pgr(p)
ν(xmk0)≥mν(xk0)≥m+ deg(xmk0),
δ(x)=+∞gr(x)/∈pgr(p)ν(xk) = deg(xk)
k≥1ν(x)=0
δ(x) = +∞δ(x, P ) = +∞
P∈A P = 1
ν(xkP)≥ν(xk) + deg(P)δ(x, P )=+∞δ(x)=+∞
δ(x)=0
P /∈pk0≥0
((p+mk) : P)⊆(p:P) + mk−k0=p+mk−k0,∀k≥k0