Université Paris 7 - Denis Diderot 2013-2014
TD 5 : Introduction à la dynamique
1 Mise en route
1. Chute libre, “mouvement naturel” et force
Depuis l’antiquité, et jusqu’à encore peu de temps avant Newton (avec Galilée), la chute
libre est considérée comme un mouvement naturel, c’est-à-dire un mouvement ayant lieu
de lui-même, qui ne nécessite pas d’action d’une force s’exerçant sur l’objet en chute
libre.
Dans l’expérience courante en effet, le phénomène de chute est omniprésent, il peut avoir
lieu pour (quasiment) tous types d’objet, quelles que soient les circonstances. Ce n’est
pas le cas par exemple du mouvement lié à l’attraction d’un aimant, qui ne concerne
que certains objets, et que l’on peut faire cesser simplement en retirant l’aimant. Le
fait que dans l’expérience courante la chute ait toujours lieu et qu’elle concerne tous les
objets, indépendamment des circonstances, légitime le fait de la considérer comme une
tendance naturelle des objets, comme ce fut le cas pendant si longtemps dans l’histoire
des idées.
(a) Qu’est-ce qui, dans la dynamique de Newton (défini par les trois lois du mouvement),
mène à interpréter le mouvement de chute libre en termes de force ? Quel est le
mouvement que l’on pourrait considérer comme naturel dans cette théorie ?
(b) A partir uniquement de la description du mouvement d’un objet, quelle est la
grandeur physique qui caractérise en un point donné la présence d’une force (ré-
sultante) s’exerçant sur cet objet ? Donner son expression explicite (à partir de la
variation du vecteur vitesse).
(c) On considère le mouvement d’une pierre ayant été jetée
(1) verticalement vers le haut, au cours de sa phase montante (cf. fig 1 - montée)
et
(2) de façon oblique, le long de sa trajectoire parabolique (cf. fig 2 - parabole).
Dans chacun des cas :
A priori, quelle(s) force(s) s’exerce(nt) sur la pierre ? (on néglige la présence
de l’air)
A partir de la figure, comment déterminer la direction de la force (résultante)
qui s’exerce sur la pierre ?
En comparant avec la figure correspondant à la chute vers le bas (cf. fig 1 -
chute), que peut-on dire sur les forces dans les différents cas, au niveau de leur
direction et de leur intensité ?
Figure 1:
Figure 2:
2. Décomposition de la force résultante
(a) A partir de la détermination de l’accélération, on a accès uniquement à la force
résultante s’exerçant sur un objet. S’il est soumis à plusieurs actions, comment
est-ce possible de décomposer cette force résultante en ses différentes composantes,
correspondant à chacune des actions ?
(b) Un parachutiste a sauté d’un avion, son parachute est ouvert, et il tombe à une
vitesse constante V. Que vaut la force résultante qui s’exerce sur lui ? Comment
trouver la valeur de la force due à la présence du parachute, f?
(c) On constate expérimentalement que si la masse du parachutiste est plus grande, la
vitesse limite du parachutiste augmente proportionnellement (en première approx-
imation). Que peut-on en conclure pour modéliser la force fliée à la résistance de
l’air dans le parachute ? Page 2
3. Force constante
Une force Fde 1 N est appliquée pendant un temps tde 0,1 s sur un objet de masse
m=100g. Calculez sa vitesse finale.
4. Principe d’action réciproque 1
Deux étudiants en physique, un fainéant et un pragmatique, doivent pousser leur voiture
en panne. Ils font les commentaires suivants :
(1) : «D’après la troisième loi de Newton, le principe d’action-réaction, si on exerce une
force sur la voiture, elle exerce une force d’intensité égale dans la direction opposée. Il
est donc impossible de faire avancer la voiture de toute manière.»
(2): «En poussant suffisamment, l’action devient plus forte que la réaction et on peut
bien faire avancer la voiture.» Expliquer pourquoi ils se trompent tous les deux. A
l’aide d’un schéma, proposer une analyse correcte de la situation, lorsque la voiture est
en mouvement. (Suggestion : représenter les différents systèmes concernés séparément,
ainsi que l’ensemble des interactions en jeu.
5. Plan incliné
Un objet de masse m est placé sur un support incliné faisant un angle a avec l’horizontale
et demeure ainsi immobile. Quelle force le support exerce-t-il sur cet objet ? (on donne
le module g de l’accélération de la pesanteur).
6. Quantité de mouvement
Un fusil de masse 0,80 kg tire une balle de masse 16 g à une vitesse de 700 ms1. Calculer
la vitesse de recul du fusil.
2 Exercices d’application
1. Ressorts
La force qu’exerce le ressort sur l’objet est-elle la même dans les deux situations ?
(cf. fig 1 - ressorts) Comment le voir à partir du mouvement ? (On pourra faire un
schéma à deux instants différents)
2. Parachutiste, régime transitoire
A partir d’un GPS embarqué par le parachutiste, donnant accès à son altitude à chaque
instant, on peut obtenir la courbe de son altitude en fonction du temps. En pre-
mière approximation, on arrive à modéliser cette courbe par une expression analy-
tique, qui dans le repère vertical Oz (avec origine au sol), prend la forme suivante :
z(t) = A(Bexp(t/τ) + Ct)A,Bet Csont des constantes positives, et τun temps
caractéristique.
(a) En déduire à chaque instant la vitesse, l’accélération, et la force (résultante) qui
s’exerce le parachutiste.
(b) Cette force est-elle différente de son poids ? Pourquoi ?
Page 3
(c) Chercher à exprimer la force en fonction de la vitesse. Interpréter l’expression
obtenue de cette force (résultante) en termes des différentes forces s’exerçant sur le
parachutiste.
3. De la terre à la lune
Pour envoyer ses voyageurs autour de la lune, Jules Vernes imagine un canon d’une
puissance et d’une longueur hors normes, puisqu’il fait L= 70 m de long. Pour qu’un
objet puis aller dans l’espace en échappant à la gravitation terrestre, on peut montrer
qu’il lui faut atteindre une vitesse de l’ordre de V l = 11,2 Km/s.
(a) Compte tenu de ces données pouvez-vous calculer en la supposant constante, l’accélération
à laquelle seraient soumis les malheureux astronautes.
(b) Déduisez en, pour une masse corporelle de m= 75 kg la force exercée par le sol de
la cabine spatiale (l’obus de Jules Vernes) sur un astronaute. Est-il besoin de se
soucier de leur retour sur la terre ?
4. Principe d’action réciproque
Un objet accroché à un ressort oscille. Peut-on dire que l’objet exerce toujours son poids
sur le ressort ? (On peut utiliser un schéma du même type que pour l’exercice «principe
d’action réciproque» pour répondre à la question.)
5. Smatch
Un joueur de tennis frappe une balle de masse m= 60 g et de diamètre D= 6 cm, et
lui donne une vitesse V= 100 km/h. La balle frappe une boite en verre de masse M=
240 g posée sur le sol. On suppose dans un premier temps que la boite est fixée au sol.
On supposera par ailleurs que le choc est élastique, c’est à dire qu’aucune énergie n’est
absorbée au cours du choc.
(a) Quelle est la vitesse de la balle après le choc ?
(b) On suppose que le choc entre la balle et la boite a lieu pendant l’intervalle de temps
t, quelle est la force moyenne appliquée sur la balle ?
(c) Calculer t, en supposant que la balle se contracte de la moitier de son diamètre
et que l’accélération constante au cours du choc. Evaluer la force.
Page 4
On considère maintenant que la boite est posée sur un sol glissant (pas de frottements).
(d) Quelle est alors la force appliquée en supposant que le temps d’impact est le même
que dans le premier cas ?
(e) Dans la cas ou la vitre est cassée par l’impact, peut-on parler de choc élastique ?
3 Problèmes
1. Oscillation, du mouvement à la force
Un objet de masse ma un mouvement de la forme x=x0cos(ωt), avec xla position, x0
et ωdes paramètres fixes, et tle temps.
(a) Quelle est la force appliquée sur l’object au cours du temps ?
(b) Exprimer cette force en fonction de la position uniquement (sans faire apparaître
explicitement le temps et la vitesse). Qu’elle type de force reconnaissez-vous ?
(c) Quel dispositif pouvez-vous imaginer pour induire un tel mouvement ?
(d) Combien de gouttes d’eau cela représente-t’il typiquement?
2. Grêlons
Si une particule de masse manimée d’une vitesse percute une paroi perpendiculairement
à celle-ci, elle va rebondir avec une vitesse égale et opposée . On appelle tl’intervalle
de temps pendant lequel la particule est en contact avec la paroi.
(a) Calculez la variation de quantité de mouvement de la particule (après et avant le
choc).
(b) Quelle est la force qui s’est exercée sur la particule pendant le choc ?
Nous allons appliquer ce résultat au calcul de la force qu’exerce une pluie de grêlons
sur une toiture. Supposons qu’un toit reçoive de la grêle perpendiculairement à la
surface du toit. La masse de chaque grêlon est m, sa vitesse v, et la concentration
en grêlons est C(nombre de grêlons par unité de volume). On suppose les chocs
élastiques et on évalue la durée de l’impact à t.
(c) Calculez, compte tenu de la concentration et du nombre de choc sur une surface S
pendant un temps d’observation égal à la durée , la force exercée sur cette surface
par la grêle.
(d) Calculez le rapport F/S et donner son sens physique.
3. Train
On considère une locomotive tractant deux wagons. La locomotive a une masse m1le
premier wagon une masse m2et le dernier une masse m3. La locomotive imprime une
accélération constante a. On néglige les frottements pour cet exercice.
(a) Tracer sur un schéma l’ensemble des forces s’appliquant sur chaque wagon et sur la
locomotive, et calculer leur valeur en fonction des paramètres du problème.
Page 5
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !