1
Université Grenoble Alpes
UE PHY114 et PHY115
mécanique du point
Vendredi 7 Novembre
durée : 1 heure 30 minutes
Documents et calculatrices non autorisés.
Les trois exercices sont indépendants.
Bien lire l’énoncé avant de commencer, cela peut être très utile, pour les
questions indépendantes par exemple.
N’utiliser les valeurs numériques que lorsqu’un calcul numérique est demandé.
Penser à mettre les unités : un résultat sans unité est inexploitable !
2
Exercice 1 : Questions de cours
Si vous cochez une réponse fausse, même en combinaison avec une ou plusieurs réponses
justes, le score est zéro.
1.A : Composantes d’un vecteur
Un parallélépipède est posé sur un plan incliné d’un angle
α
par rapport à l’horizontale.
Déterminez les deux composantes P
x
et P
y
du poids
P
r
dans le repère (0, i
r
,j
r
) représenté sur
le schéma ci-dessous.
1.B : Deuxième loi de Newton
Répondez à la question suivante en rédigeant une ou plusieurs phrases complètes et en
justifiant brièvement votre réponse.
Dans quel(s) cas l’accélération d’un objet est nécessairement nulle ?
Un objet qui se déplace avec une vitesse de 30 km/h.
Un objet dont le vecteur vitesse est constant.
Un objet qui suit un mouvement curviligne.
Un objet qui suit un mouvement rectiligne.
Aucun des 4 cas ci-dessus.
P
r
α
i
r
j
r
O
3
1.C : Lancer d’un boulet de canon
On note v
0
la vitesse initiale qui forme un angle θ à l’origine, m la masse du boulet, z
m
l’altitude maximale atteinte par le boulet de canon, et d la portée du boulet (c’est-à-dire la
distance à laquelle le boulet de canon touche le sol). Les frottements sont négligés.
Indiquez sans justifier quelle(s) proposition(s) est (sont) correcte(s).
- Paul propose la relation suivante :
θ
sin
2
0
g
v
d=
Ce résultat parait :
a : Possible car homogène.
b : Impossible car non homogène.
c : Impossible car la portée d doit dépendre de la masse m du boulet.
d : Possible car d est indépendant de l’altitude z
m
atteinte du boulet.
- Pierre propose la relation suivante :
g
v
z
m
θ
sin
2
0
=
Ce résultat parait
e : Possible car homogène.
f : Impossible car non homogène.
g : Impossible car z
m
doit dépendre de la masse m du boulet.
h : Possible car z
m
est indépendant de la portée d.
θ
4
Exercice 2 : Goutte d’eau dans un nuage
Dans cet exercice, on se propose d’étudier le mouvement d’une goutte d’eau qui se forme par
la fonte quasi-instantanée de cristaux de glace contenus dans un nuage. On considère que la
goutte sphérique, de rayon R et de masse M, tombe verticalement sans vitesse initiale, d’une
altitude h prise comme origine du repère vertical (O ; j
r
).
Dans un premier temps, les frottements de l’air sur la goutte sont négligés.
2.1 : En expliquant soigneusement la démarche suivie, donner l’expression des vecteurs
accélération
a
r
(t), vitesse
v
r
(t) et position
r
r
(t) de la goutte en fonction du temps.
2.2 : En déduire la relation entre la distance
d
parcourue par la goutte et la norme de sa
vitesse, à un instant t quelconque.
Dans un deuxième temps, on considère que l’air exerce une force de frottement
f
F
r
non
négligeable sur la goutte.
2.3 : Donner la relation qui existe entre cette force
f
F
r
et la vitesse
v
r
(t) de la goutte à un
instant t donné. Préciser la nature et l’unité de chaque grandeur intervenant dans cette relation.
2.4 : Faire un bilan de toutes les forces qui s’exercent sur la goutte, et les représenter sur un
schéma.
2.5 : En négligeant la poussée d’Archimède, établir l’équation différentielle qui régit le
mouvement de la goutte au cours de sa chute.
2.6 : En s’appuyant sur la 2
ème
loi de Newton, discuter qualitativement l’évolution de la
vitesse de la goutte au cours de sa chute.
2.7 : En déduire l’expression de la vitesse limite
vlim
de chute de la goutte.
5
Exercice 3 : Coefficients de frottement
On considère un bloc de masse m posé sur une surface plane et horizontale.
Pour les applications numériques (AN), on prendra g = 10 ms
-2
pour l’accélération de
pesanteur.
cas A : On néglige les frottements :
On applique une force
F
r
horizontale sur le bloc, telle qu’indiquée sur la figure.
3.1 : Faire un schéma montrant toutes les forces qui s’exercent sur le bloc.
3.2 : En appliquant le PFD, en déduire l’expression de l’accélération
a
acquise par le bloc.
3.3 : AN : on donne la masse du bloc m = 25 kg et la force appliquée F = 100 N. Calculer
l’accélération a.
On applique maintenant la force
'
F
r
faisant un angle
α
avec la verticale, comme indiqué sur
la figure suivante :
3.4 : Faire un nouveau schéma en indiquant toutes les forces qui s’exercent sur le bloc.
3.5 : Donner les composantes F’
x
et F’
y
de la force
F
r
’ suivant les axes [Ox) et [Oy).
3.6 : Ecrire le PFD et faire sa projection suivant les deux axes [Ox) et [Oy).
3.7 : En déduire l’expression de l’accélération
a’
acquise par le bloc, ainsi que celle de la
réaction exercée par le sol sur le bloc.
Vérifier que pour
α
= 90°, ce résultat est cohérent avec l’accélération déterminée à la question
3.2.
m
F
r
α
m
'
F
r
O
x
y
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !