La piste de trapode de Valentia Island
par Matthew Parkes
(traduit par Sophie Pteseille)
Edité par le Geological Survey of Ireland et le National Parks and Wildlife Service
du
Department of Environment, Heritage and Local Government, 2004.
Geological Survey of Ireland National Parks and Wildlife Service
Beggars Bush 7 Ely Place
Haddington Road Dublin 2
Dublin 4, Ireland Ireland
www.gsi.ie
© The Geological Survey of Ireland
ISBN 1 899702 40 7
Imprimé par Leinster Leader Ltd., Naas, Co. Kildare
Remerciements
L’auteur, le Geological Survey of Ireland et Jim Larner du National Parks and Wildlife Service (NPWS) remercient pour leur aide : Iwan Sssel,
John Francis Curran, Pat Curran, Claire Ring, Dermot Ring, toutes les personnes impliquées dans la Valentia Heritage Society, Ken Higgs, Ed
Williams, Michael O’Shea, Jenny Clack, Roisin Ní Murchada, l’équipe de la Valentia Radio Station, et tous les habitants de Valentia qui se sont
intéressés à la piste et se sentent concernés par son devenir ;
Brian McConnell, Gerry French, Ray Weafer, Padraig Connaughton, John Morris
et autres personnes du Geological Survey of Ireland qui ont aidé de différentes manières pour le texte et les illustrations.
Cdits photos
L’illustration de la page 7, “animals colonise the land” de R. Greg Michaels est reproduite avec la permission du Denver Museum of Nature
and Science. Les reconstitutions du tétrapode par Billie Clarke, Département de Zoologie –
University College Dublin, ont toutes été réalisées à
la
demande du NPWS. La reconstitution du monde au Dévonien de la page 12 est reproduite à partir de “
Life Before Man de Zdenek V. Spinar,
publà lorigine par Aventinum Publishing, Prague. Toutes les autres photos sont de Matthew Parkes. La carte palaéogéographique (page 14)
et le diagramme de corrélation (page 15) sont modifiés d’après les originaux produits par John Morris et Brian McConnell pour le Geological
Survey of Ireland.
MISE EN GARDE
La piste de tétrapode de Valentia est un site géologique national protégé par la loi. Toute intervention, dommage, enlèvement ou autre
dégradation auront comme conséquence la poursuite du/des contrevenant(s).
Assurez-vous que vous quittez le site tel que vous l’avez trouvé, c’est -
à
-dire en parfaite condition.
Ne prenez, s’il vous plait, que des
photos de votre visite ainsi quune agable expérience. Emportez vos déchets avec vous. Faites en sorte que les autres
visiteurs
puissent profiter du site comme vous avez pu le faire.
La piste est un témoin fragile d’un passé ancien. A tout moment, vous devez rester derrière les barrières et clôtures pour éviter
d’abîmer les empreintes. Les clôtures sont également là pour votre curité. Ne les franchissez pas. Au-delà, les falaises sont
escarpées, les surfaces glissantes, les vagues dangereuses. Si le temps est mauvais, faites appel à votre bon sens et restez éloigné
de la piste.
La piste de trapode de Valentia Island
qu’est
-ce que c’est?
Sur les roches, au sommet des falaises de Valentia Island, on peut voir une
piste fossile. Il sagit dune série dempreintes dun
tétrapode
un grand animal amphibien qui a marché sur un sédiment mou/non consolidé, il y a 385 millions dannées. Ces
empreintes sont maintenant conservées dans la roche comme des impressions superficielles.
La visite du site
Le site est un monument géologique national important. Il est la propriété de l’Etat et est par le National Parks and Wildlife
Service du Department of Environment, Heritage and Local Government afin d’en assurer un accès sans danger pour les
visiteurs. Un parking a été anagé. Un chemin de 200 m conduit le visiteur à des points de vue au sommet de la falaise, ps
de la piste. Afin de voir la piste dans les meilleures conditions, il est recommandé de venir le matin ou le soir par temps
ensoleillé (page 11). Laccès est gratuit.
Pourquoi ce site est-il si important?
La piste de tétrapode repsente le plus vieil enregistrement fossile in situ d’une étape majeure dans lévolution de nos très
lointains ancêtres vertébs. Cet enregistrement est le témoin de la toute première étape de la transition des vertébs de
l’environnement aquatique à l’environnement terrestre, de la respirationrienne
et de la marche sur quatre pattes. En résu,
c’est le premier enregistrement fossile in situ d’un animal amphibien.
Qu’est ce qu’un trapode?
Un tétrapodesigne simplement un animal à quatre pattes, du grec : tétra = quatre + pod =pied.
A quoi ressemblait cetrapode?
Ce tétrapode avait quatre pattes et ressemblait probablement à une salamandre, mais dun mètre de long,
la queue
repsentant un tiers de la longueur du corps. Nous connaissons ceci d’aps lanalyse des empreintes et de lespace qui les
sépare. Le plus vieux squelette connu de tétrapode a à peu près 5 millions dannées de moins et nous donne une idée de ce à
quoi pouvaient ressembler ces premiers tétrapodes, mais nous ne pouvons que faire appel à notre imagination pour certaines
caractéristiques.
De quelle type de roche sagit-il?
Il sagit dune roche sédimentaire. A l’origine, cette roche sestposée sous forme de couches de silt/limon et de sable fin. Elle
a ensuite été compactée au cours du temps et enterrée sous dautres sédiments pour devenir une série de couches de grès et
micro grès. Toutes les roches sur Valentia Island sont similaires et les géologues les regroupent sous le terme de "Valentia
Slate Formation". Lardoise de Valentia, (le sédiment dorigine était de la boue), a longtemps été exploitée dans la colline qui
surplombe la piste de tétrapode. Vous pouvez visiter la Slate Mine Grotto pour observer ces ardoises de plus près.
Comment sest formée la piste?
Imaginez un chien traversant une mare boueuse ou marchant sur du ciment frais ainsi que les empreintes quil laisse derrière
lui et vous verrez
ainsi comment les empreintes d
e
tétrapode furent formées. Lanimal marcha sur des sédiments silteux moux
laissant derrière lui ses empreintes. Un apport de sédiments recouvrit ensuite la surface avant que celle-ci n’ait pu être inondée
ou asséchée. Cette conservation fortuite nous a laissé ce fantastique enregistrement de la première excursion dun vertéb sur
la terre ferme.
Une question d’interprétation!
Certains géologues disent que le tétrapode devait marcher en eau peu profonde, comme le montre l’illustration ci-dessous et
que son corps était porté par l’eau. Quoi quil en soit, à une extrémité de la piste [image de la page prédente] on peut voir
l’empreinte dun corps et une trace de queue suggérant que lanimal était clairement hors de l’eau portant son propre poids.
Qu’en pensez-vous ?
Une réplique de cette portion de la piste a été installée au sommet de la falaise pour que vous puissiez la toucher. Vous devriez
être en mesure decerner tout dabord une cannelure en zigzag laissée par la queue de lanimal puis un sillon plus profond
laissé par le ventre de l’animal.
Quelles autres créatures vivaient à la même époque ?
C’est une question à laquelle nous ne pouvons pas pondre avec certitude étant donné que nous navons presque pas de
fossiles dans les roches de Valentia. Les premières plantes terrestres sont dâge Silurien, ce qui les fait apparaître vers 35-40
millions dannées avant la piste (Échelle des temps, page 15). A la même époque, mais dans des contextes géologiques
différents de Valentia, il existe une grande variété de plantes comme la fougère arborescente ou des plantes qui n’existent plus
aujourdhui. La surface terrestre proche de laquelle le tétrapode a laissé ses empreintes nétait probablement pas stérile de
plantes, bien quaucun fossile nait été trouvé à ce jour ; il se peut toutefois quil y en ait, de façon éparse. Quoi quil en soit,
l’environnement géologique de dépôt nétait pas favorable pour la conservation de plantes qui auraient pu vivre dans les
alentours. Toutefois, récemment, le paléontologue Ken Higgs, de lUniversity College Cork, a trouvé des spores de plantes dans
des micro-fossiles près de Knightstown, ce qui prouve au moins la présence de plantes dans un secteur plus vaste à cette
époque.
Dans l’eau, il y avait une grande variété de poissons, aussi bien dans leau douce que dans les environnements marins. Il y
avait aussi beaucoup d’invertébs comme des coraux, des bivalves, des gastéropodes, des brachiopodes, des nautiloïdes.
Leurs fossiles ont été trouvés dans des endroits bien distincts et essentiellement dans des diments marins. Des fragments de
poissons cailles) ont été trouvés sur laninsule d’Iveragh, dans des roches dâge identique à celle de la piste, mais aucun
fossile de poisson n’a été trouvé dans les roches de Valentia Island.
Ces écailles de poissons ont été trouvées dans six horizons bien précis, plutôt que largement distribuées. Ce qui suggère que
chaque horizon représente davantage les sédimentsposés à la suite d’une incursion de la mer sur la plaine côtière, à la
manière d’une grande marée, plutôt que les dimentsposés à la suite d’une crue de rivière.
Quelques illustrations de ces écailles de poissons et autres fragments -
A: plaque osseuse, B: une épine d'aileron, C: ap
pendice
pectoral. Les illustrations ne sont pas toutes à lame échelle.
A quoi correspondent les rides?
Les rides de plage sont des structures sédimentaires que les géologues utilisent pour interpréter l’environnement de l’époque
lorsque les roches se sont dépoes. Ces rides sont produites par les vagues. Elles sont caractéristiques denvironnement
d’eau peu profonde et ressemblent beaucoup à celles que vous pouvez voir aujourdhui sur une plage de sable.
Les pistes comme celle-ci sont-elles rares ?
Il
existe seulement une poignée de sites similaires connus dans le monde avec des pistes de tétrapode
s
d’âge Dévonien
(échelle des temps, page 15). Un site au Brésil présente seulement une empreinte, montrant toutefois bien les détails des
doigts (ou orteils). Un site en Écosse nest pas très bien préservé dans une roche de grain grossier. Les autres sont en
Australie et ont beaucoup moins dempreintes. Tous sont dâge plus cent que la piste de Valentia. Toutefois, il existe une
série d’empreintes sur une dalle, qui est peut être plus ancienne, mais dont la provenance exacte est inconnue.
Comment lanimal se plaçait-il ?
Les pistes suggèrent que le tétrapode devait marcher. Son corps devait se balancer de part et dautre, au fur et à mesure quil
avançait. Imaginez un crocodile pour avoir une idée de la démarche du tétrapode. Son corps devait être probablement proche
du sol comme en témoigne la présence dun sillon au milieu dune série dempreintes ainsi quun sillon en zigzag que devait
laisser la queue en raclant le sédiment.
Rides de vagues et rides de clivage
Pour l’étudiant enologie ou le géologue professionnel, il existe une complication supplémentaire qui mérite plus ample
observation. Limposition d’une schistosité (page 10) sur la Valentia Slate Formation pendant le cycle orogénique
Hercynien/Varisque a aussi crée des rides de schistosité sur certaines surfaces dues à la compression de la roche. Pouvez-
vous les distinguer ? Les parties de la surface principale situées à lextérieur, ps de la mer, sont le meilleur endroit pour les
observer.
Pourquoi ny a-t-il aucun os ni fossile conservé ici ?
L’environnement dans le lequel vivait le tétrapode n’était pas favorable à la conservation des restes danimaux en tant que
fossiles. Tout tétrapode qui a pu mourir sur la terre ferme a dû se décomposer et les os ont dû être emportés. Ceux qui sont
morts dans leau ont dû être dévos et dispersés par dautres animaux. Toutefois, il est possible que des os de tétrapode aient
été préservés. Si une inondation de grande ampleur a eu lieu juste aps la mort dun tétrapode, il est possible que la carcasse
ait été enterrée et les os fossilisés avant quils ne se soient décomposés.
De nombreux paléontologues ont passé la zone au peigne fin sans trouver le moindre fossile correspondant aux empreintes.
Mais si des fossiles venaient à être découverts, cela renforcerait limportance du site.
Les empreintes ont é raccourcies –qu’est ce que cela signifie ?
Les couches successives de silt et de sable fin se sont déposées à la suite de crues successives et accumulées les unes sur
les autres pour former l’essentiel de l’épaisseur des bancs de roches. Les sédiments, au cours de leur transformation en roches
(pétrification/lithification) furent intégs sur les marges d’une montagne en cours de formation lors de l’orogenèse hercynienne,
plusieurs millions d’années plus tard. Soumises aux effets combinés de l’enfouissement sous dautres couches de roches ainsi
que les forces imposées par cette orogenèse, les roches ont été comprimées latéralement. Ceci a entraîné la orientation des
minéraux. Les roches ont par ailleurs été comprimées de 40%. Ce qui veut dire que les empreintes sont aujourdhui plus
proches les unes des autres quelles ne l’étaient à l’origine.
Les empreintes originelles, comme montrées à droite, changent de forme ci-dessous, du fait de leur orientation par rapport à la
compression.
Si vous découvrez des fossiles sur Valentia, contactez le Geological Survey of Ireland ou le National Museum of Ireland pour
les faire identifier. Prenez des photos des fossiles et envoyez-les –
Nessayez pas de
les enlever !
Comment cela sest-il produit ?
Bien quil soit facile d’établir que les empreintes sont aujourdhui plus proches les unes des autres, laformation de la roche
est un concept plutôt complexe à saisir. Il résulte de différentes composantes qui n‘eurent pas toutes lieu enme temps et qui
se déroulèrent probablement sur plusieurs millions d’années. Il y eut dabord une perte d’eau au sein du sédiment lorsque celui-
ci fut compressé. Les grains et particules, surtout les minéraux argileux, furent alors réorganis à l’intérieur du sédiment. Ces
changements eurent lieu sous des pressions très importantes produisant une schistosité ou clivage ardoisier –
un plan de
séparation préférentiel, néralement dun grand angle avec les laminations originelles ou lits. Dans certaines boues fines, ce
clivage permet de séparer les dalles en ardoises, utilisées pour la toiture.
Les plissements sont aussi un élément important de laformation. La compression entraîne le plissement des couches
individuelles de roches, appelées lits. Si vous vous trouvez au plus ps de la piste et regardez derrière vous, vous verrez un
pli. Ici, les couches de roches ont été doucement plissées vers le haut pour former ce que les géologues appellent un anticlinal.
Toutefois, ce processus a dû intervenir dans une phase tardive de la déformation car le raccourcissement total dans ce pli est
moindre que le raccourcissement total de la masse rocheuse. Par ailleurs, laformation n’est pas lame partout. Et des
petites veines de quartz (minéral blanc) ici et là dans la roche sont le témoin de tension plus que de compression.
Une manière simple de comprendre les plissements est de jouer avec la nappe d’une table, la prochaine fois que vous vous
mettrez à table. Si vous poussez la nappe continuellement, elle commencera par se riduler vers le haut. Plus vous poussez,
plus les plis se rapprochent les uns des autres et une forme plus compliquée se développera si vous continuez encore à
pousser. Essayez ceci avec une nappe en lin épais, puis essayez avec une nappe en papier. Vous verrez des différences dans
le comportement avec ces dernières. Il en est de même pour des couches de roches d’épaisseur différente.
Quel est l’âge de ces empreintes?
La piste a à peu près 385 millions dannées. Elle sest formée au cours duvonien moyen (nom de système), plus
précisément au cours de ce que les géologues appellent le Givétien (nom détage). [Échelle des temps, page 15].
Comment peut-on connaître l’âge de ces empreintes?
Dans la succession de strates, pas ts loin au-dessus de la piste, et donc dâge un peu plus cent, il existe une couche de
cendres volcaniques. Ces roches volcaniques renferment des minéraux qui contiennent des quantités minimes de radioactivité.
Tous les éléments radioactifs s’affaiblissent à des taux connus. Leur demi-vie est le temps fixecessaire pour que la moitié de
la radioactivité d’origine disparaisse. En trouvant des minéraux qui ont une demi-vie qui convienne, on peut mesurer la quantité
de produits disparus et calculer l’âge de formation du cristal. Ce qui nous donne un âge plutôt pcis, en particulier pour ces
cendres, d’environ 384± 0.7 millions dannées. Comme la piste est plus ancienne que le niveau de cendres volcaniques, 385
millions dannées est un âge moyen estimé.
Quel est le meilleur moment pour visiter le site?
Si c’est possible, essayez de visiter le site par beau temps, en matinée ou en soirée. À ces heures, le bas angle de la lumre
entrante du soleil jette une ombre dans lapression peu profonde des empreintes et les fait apparaître clairement. Les
empreintes sont des éléments assez subtils pas toujours évidents à voir à moins que la lumière ne soit bonne ou quil y ait une
petite flaque d’eau dans les empreintes les plus profondes. Parfois, lorsque les embruns sèchent, une croûte de sel peut se
former autour de certaines empreintes.
Certaines parties de la piste se voient mieux en milieu de matinée (à droite), dautres à contre-jour en soirée (ci-dessous).
Le monde au vonien
Le monde auvonien (il y a 410-360 millions dannées) était bien différent de celui que l’on connaît aujourdhui. Les
mammifères nexistaient pas. Et les dinosaures napparurent que bien longtemps aps (Échelle des temps, page 15). Des
plantes telles que les ples, mousses et autres fougères commençaient seulement à occuper le paysage alors
quapparaissaient les insectes. Le grès rouge du Kerry conserve un enregistrement de ce paysage dominé par quelques
rivières principales, en provenance du nord, dévalant une jeune chaîne de montagne et inondant de façon occasionnelle la
plaine côtière.
se trouvait lIrlande à ce moment là?
L’Irlande se trouve aujourdhui dans l’hémisphère Nord. Il y a 385 millions dannées, elle se trouvait dans lhémisphère sud, à
des latitudes tropicales. Elle représentait un petit morceau d’un vaste supercontinent
qui existait alors, soit sous la forme dun
golfe marin peu profond à la bordure des
continents ou sous la forme d’un bras de mer à travers le
supercontinent. La
reconstitution paléogéographique ci-dessous montre la situation telle quelle devait être un peu plus tôt auvonien, avec
l’oan ouvert au sud-ouest.
A quoi ressemblait lenvironnement ?
Il est possible de spéculer sur ce que pouvait être l’environnement dans lequel vivait le tétrapode, à partir des données
disponibles. Mais on ne peut pas être sûr à 100% après 385 millions dannées. Les géologues peuvent lire l’histoire passée
dans les roches ainsi que dans lassociation des différentes caractéristiques mises en place au cours de divers processus
ologiques. Le présent est la clé du passé. Lobservation des processus et environnements actuels nous permet dinterpter
ce que devaient être les environnements passés.
Le tétrapode laissa ses empreintes sur des boues silteuses fraîchement dépoes par une inondation sur une plaine côtière.
Une analogie moderne serait du type des inondations qui ont lieu au Bengladesh aujourdhui, où des zones importantes sont
inones périodiquement.
L’évidence géologique dans les couches de terrain montre quil y navait pas ou peu de rivières. Elle montre toutefois de la
boue, du silt et du sable accumulés, couches après couches, par des inondations successives. Quand vous observez les
couches de terrains autour de vous, chaque niveau épais de quelques centitres à une dizaine de centitres repsente
les
pôts d’une inondation. Il est aujourdhui impossible de dire à quelle fréquence ces inondations avaient lieu ;
si
elles avaient
lieu de façon saisonnière, annuelle ou sporadique, entrecoupées deriodes sèches de plusieurs années peut-être.
Cette carte montre à quoi laographie de la terre et de la mer devait probablement ressembler quand la piste sest formée.
Une plaine côtière sétendant jusquau Munster, était périodiquement inondée par de grandes rivières drainant des matériaux en
provenance des montagnes du nord. Ces montagnes et celles plus au nord étaient probablement de même taille que les Alpes
aujourdhui.
Quelques références bibliographiques techniques mais aussi grand public si vous souhaitez en savoir un peu plus sur la piste et
l’arrêt sur image que repsente Valentia sur la spectaculaire histoire de l’évolution :
Clack, J.A. 2002. Gaining Ground. Indiana University Press, 369 pages.
Higgs, K. 1998. "The Rock of the Hooves". Journal, Cork Geological Association, 1, 17-18.
Rogers, D.A. 1990. Probable tetrapod tracks rediscovered in the Devonian of N Scotland. Journal of
the Geological Society, London, 147, 746
-
748.
Russell, K.J. 1978. Vertebrate fossils from the Iveragh Peninsula and the age of the Old Red Sandstone. Journal of Earth Sciences, Royal
Dublin Society, 1, 151-162.
Stössel, I. 1995. The discovery of a new Devonian tetrapod trackway in SW Ireland. Journal of the Geological Society, London, 152, 407-413.
Stössel, I. 2000. Frühe Tétrapoden: Kontroverse Spurenfossilien. Viertaljahrsschrift der Naturforschended Gesellschaft inrich, 145/1, 31-40.
[in German but with English abstract and figure captions]
Warren, A., Jupp, R. and Bolton, B. 1986. Earliest tetrapod trackway. Alcheringa, 10, 183-186. [This is about a trackway in Australia which may
be older than Valentia, but is on a paving slab]
Williams, E.A., Sergeev, S.A., Sssel, I. and Ford, M. 1997. An Eifelian U-Pb zircon date for the Enagh Tuff Bed from the Old Red Sandstone of
the Munster Basin in NW Iveragh, SW Ireland. Journal of the Geological Society, London, 154, 189-193.
Williams, E.A., Sergeev, S.A., Sssel, I., Ford, M. and Higgs, K.T. 2000. U-Pb zircon geochronology of silicic tuffs and chronostratigraphy of the
earliest Old Red Sandstone in the Munster Basin, SW Ireland. In: Friend, P.F. and Williams, B.P.J. (eds). New Perspectives on the Old
Red Sandstone. Geological Society, London, Special Publications, 180, 269-302.
Westenberg, K. 1999. The rise of life on Earth, from fins to feet. National Geographic 195: 114-127.
Zimmer, C. 1998. At the Water’s Edge. Macroevolution and Transformation of Life. The Free, Press, New York, 290 pages.
Sites Internet
http://www.gsi.ie
http://www.ucc.ie/en/geology/Museum/ http://www.bbc.co.uk/dna/h2g2/alabaster/A1049951
http://indigo.ie/~cguiney/dinosaur.html
http://www.ucmp.berkeley.edu/vertebrates/tetrapods/tetraintro.html
http://corkgeology.homestead.com/icga6.html
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !