Examen 2e session de probabilités et statistiques
Licence SPI 3e année - Resp.: J. Unterberger
Université de Lorraine - année 2015-2016
Exercice 1 (loi de Bayes).
L’équipe bruxelloise de football compte 11 joueurs, dont 5 Flamands et 6
Wallons. Les Bruxellois mangent des frites carrées ou des frites hexagonales
"new look". Les Wallons mangent à 60% des frites carrées, et à 40% des
frites hexagonales. Les Flamands, eux, mangent à 40% des frites carrées, et
à 60% des frites hexagonales.
A la mi-temps, on surprend un joueur en train de manger des frites hexag-
onales. Quelle est la probabilité qu’il soit flamand ?
Exercice 2.
Un singe s’amuse à sauter au hasard sur un trottoir avec des pavés. A
chaque fois, soit il reste sur place, soit il saute sur le pavé devant lui, soit il
saute à reculons sur le pavé derrière lui. Ses sauts successifs sont supposés
indépendants.
Sa position Snau bout de nsauts peut donc être modélisée par une
somme Sn=X1+. . . +XnXi,i= 1,2, . . . , n sont des v.a. i.i.d. de loi
P[Xi= 0] = p, P[Xi= 1] = q, P[Xi=1] = 1pq(0< p, q < 1, p+q < 1).
1. Calculer E[Xi],Var(Xi).
2. En déduire: E[Sn],Var(Sn).
3. Quelle est la loi de Z=X1X2? (on déterminera l’ensemble des valeurs
possibles pour la v.a. Z, et la probabilité de chacune de ces valeurs)
En déduire: E[Z],Var(Z).
4. Quelle est la loi de T=X1+X2?
1
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !