Première S2 2007/2008
Exercices supplémentaires de mécanique
Exercice 1 : Puissance moyenne
On monte une charge à 4,0m du sol en 2,0s en exerçant une force constante. La puissance moyenne de
cette force est 600W.
1) Déterminer le travail de la force pendant la montée.
2) Déterminer la valeur de la force exercée sur la charge.
Exercice 2 : caravane tractée
Une voiture monte une côte rectiligne de pente 6,00 % (le centre d'inertie de la voiture s’élève d’une hauteur
de 6,0 m lorsqu'elle parcourt une distance de 100 m sur la piste) et de longueur L = 200 m à la vitesse
constante v = 70,0km.h-1.
Cette voiture tracte une caravane de masse m = 500 kg.
Dans cet exercice la caravane sera considérée comme un solide en translation. g = 9,80 N.kg-1.
Les forces de frottement s'opposant au mouvement de la caravane, dues essentiellement à la résistance de
l'air, sont équivalentes à une force unique et constante
f
de valeur
3
1,00 10f N
= ⋅
.
1)Faire le bilan des forces extérieures s'appliquant à la caravane. Représenter ces forces sur un schéma.
2)Quelle est la résultante de ces forces ? Justifiez.
3)Calculer le travail du poids
P
, le travail de la réaction normale
N
R
, et le travail de la force de frottement
f
pour un déplacement de longueur L.
4)En déduire le travail de la force de traction
T
exercée par la voiture sur la caravane pour un déplacement
de longueur L.
5)Quelle est la puissance moyenne de cette force ?
6)Arrivée en haut de la côte, la voiture s’arrête et le conducteur décroche la caravane, malheureusement,
celle-ci repart en arrière, le long de la pente. En considérant que la caravane part d’en haut avec une
vitesse initiale nulle et que les frottements de l’air sont négligeables pour simplifier, calculer la vitesse à
laquelle la caravane arrive en bas de la pente de longueur L. Que peut dire au niveau des transferts
d’énergie au niveau de la caravane dans ce cas ?
7)Même question, mais cette fois on prend en compte les frottements
'f
lors de la descente ; on peut
considérer que ceux-ci ont pour valeur
3
' 0, 20 10f N
= ⋅
.
Exercice 3 : mouvement d’un pendule
Une bille de masse
100 m g
=
est suspendue à un point O par un fil
inextensible de longueur
1m
=
et de masse négligeable. Le pendule
ainsi constitué peut effectuer des oscillations de part et d’autre de sa
position d’équilibre.
On l’écarte de la verticale d’un angle
0
30
θ
= °
et on l’abandonne sans
vitesse initiale.
On suppose les frottements négligeables et on prendra
1) Quelle est la position d’équilibre
éq
θ
du pendule ? Justifiez.
2) Représenter les forces qui s’exercent sur la bille lorsque le fil fait un angle
0
θ
avec la verticale.
3) Ces forces se compensent-elles ? Que peut-on en conclure sur le mouvement de la bille une fois
lâchée ?
4) Exprimer littéralement le travail de chacune des forces au cours du mouvement (on ne cherchera pas
à faire l’application numérique)
5) Justifiez la conservation de la somme
Ec Epp
+
pour la bille du pendule. Quelle est la transformation
d’énergie qui s’effectue au cours du mouvement ?
6) En déduire la vitesse de la bille lorsqu’elle repasse par sa position d’équilibre (écriture littérale puis
application numérique).
7) La masse de la bille intervient-elle dans l’expression de la vitesse ? Conclure sur la période du
mouvement ?
h
O
30
o
θ
= °
Première S2 2007/2008
Correction
Exercice 1 : Puissance moyenne
On monte une charge à 4,0m du sol en 2,0s en exerçant une force constante. La puissance
moyenne de cette force est 600W.
1) Déterminer le travail de la force pendant la montée.
( ) 600 2,0 1200
AB AB
W F P t J
= × ∆ = × =
2) Déterminer la valeur de la force exercée sur la charge.
( )
AB
W F F AB F AB
= = ×
 
( ) 1200 300
4, 0
AB
W F
F N
AB
⇒ = = =
Exercice 2 : caravane tractée
Une voiture monte une côte rectiligne de pente 6,0 % (le centre d'inertie de la caravane monte
de 6,00 m lorsqu'il parcourt 100 m) et de longueur L = 200 m à la vitesse constante v = 70km.h-1.
Cette voiture tracte une caravane de masse m = 500 kg.
Dans cet exercice la caravane sera considérée comme un solide en translation. g = 9,80 N.kg-1.
Les forces de frottement s'opposant au mouvement de la caravane, dues essentiellement à la
résistance de l'air, sont équivalentes à une force unique et constante
f
de valeur
3
1,00 10f N
= ⋅
.
1) Faire le bilan des forces extérieures s'appliquant à la caravane. Représenter ces forces sur
un schéma.
2) Quelle est la résultante de ces forces ?
La caravane est en mouvement de translation rectiligne uniforme, l’application du principe d’inertie
(1ère loi de Newton) indique que la résultante des forces extérieures (c’est à dire la somme
vectorielle des forces extérieures) est nulle :
0
ext
N
F P R f T
= + + + =
   
3) Calculer le travail du poids
P
, le travail de la réaction normale
N
R
, et le travail de la force
de frottement
f
pour un déplacement de longueur L.
( ) . . .( ) . ( )
AB A B B A
W P P AB m g z z m g z z mgh
= = − = − =
 
application numérique:
( ) 500 9,80 12,0 ( ) 58,8 0
L L
W P W P kJ
= − × × = − <
 
( ) . 0
L N N
W R R L
= =
car
N
R L
 
( ou
( ) cos90 0
L N N
W R R L
= ° =
)
( ) . .
L
W f f L f L
= = −
 
car
et T L
 
sont colinéaires et de sens opposés (ou
( ) . cos(180 )
L
W f f L f L f L
= = ° = −
 
)
application numérique:
3
( ) 1, 00 10 200 ( ) 200
L L
W f W f kJ
= − × = −
 
P
: le poids de la caravane
N
R
: la réaction normale de la
route
f
: la force de frottement
T
: la force de traction exercée
par la voiture sur la caravane.
Première S2 2007/2008
4) En déduire le travail de la force de traction
T
exercée par la voiture sur la caravane pour un
déplacement de longueur L.
Puisque
0
N
P R f T
+ + + =
   
, alors
.P L
+
.
N
R L
+
.f L
+
.T L
=0, d’où
( )
L
W P
+
( )
L N
W R
+
( )
L
W f
+
( )
L
W T
=0, en remplaçant par les valeurs trouvées juste avant, on peut écrire que : -58,8 + 0 +
(-200) +
( )
L
W T
=0 d’où
( )
L
W T
=259kJ (3 chiffres significatifs)
5) Quelle est la puissance moyenne de cette force ?
( )
( )
L
W T T L
P T T v
t t
×
= = = ×
∆ ∆
Il faut donc calculer la valeur de T ou la valeur de
t
:
1 1
70
70 . 19, 4 .
3, 6
v km h m s
− −
= = =
200 10,3
19, 4
L
t s
v
⇒ ∆ = = =
On peut alors finir le calcul :
3
4
( ) 259.10
( ) 2,53 10 25,3
10,3
L
W T
P T W kW
t
= = = ⋅ =
6) Arrivée en haut de la côte, la voiture s’arrête et le conducteur décroche la caravane,
malheureusement, celle-ci repart en arrière, le long de la pente. En considérant que la
caravane part d’en haut avec une vitesse initiale nulle et que les frottements de l’air sont
négligeables, calculer la vitesse à laquelle la caravane arrive en bas de la pente de longueur
L. Que peut dire au niveau des transferts d’énergie au niveau de la caravane ?
Si les frottements sont négligeables alors il y aura transfert d’énergie potentielle acquise par la
caravane au point B en énergie cinétique de la caravane au point A. Les deux variations seront
égales en valeurs absolues mais opposées en valeur.
D’où :
2 2
1 1 ( ) ( )
2 2
C PP A B A B B A
E E mv mv mgz mgz mg z z
= − = − =
De plus, vB=0, d’où
2 2
1( ) 2 ( ) 2 ( )
2
A B A A B A A B A
mv mg z z v g z z v g z z
= = ⇒ =
Application numérique :
1 1
2 9,80 12,0 15,3 . 55,2 .
A
v m s km h
− −
= × × = =
7) Même question, mais cette fois on prend en compte les frottements
'f
lors de la descente ;
on peut considérer que ceux-ci ont pour valeur
3
' 0, 20 10f N
= ⋅
.
Deux raisonnement sont possibles :
Si les frottements ne sont pas négligeables alors il y aura transfert d’énergie potentielle
acquise par la caravane au point B en énergie cinétique de la caravane au point A et énergie
thermique perdue pour la caravane par transfert thermique avec l’air. On pourra alors écrire :
2 2
' '
1 1
( ') ( ) ( ') ( ) ' '
2 2
C L PP A B A B L B A
E W f E mv mv mgz mgz W f mg z z f L
= − = − + =
 
Avec
'
( ') '. '
L
W f f L
= −
car
' et 'f L
sont toujours opposés, ils correspondent respectivement
à
et -f L
De plus vB=0 d’où :
2 2
1 2 ' ' 2 ' '
( ) ' ' 2 ( ) 2 ( )
2
A B A A B A A B A
f L f L
mv mg z z f L v g z z v g z z
m m
⋅ ⋅
= − − = = − −
Application numérique :
3
1 1
2 0, 20 10 200
2 9,80 12 8,7 . 31 .
500
A
v m s km h
− −
× ⋅ ×
= × × − = =
On applique le théorème de l’énergie cinétique entre B et A. C’est plus classique comme
démarche et cela revient au même au niveau des calculs.
Première S2 2007/2008
Exercice 3 : mouvement d’un pendule
Une bille de masse
100 m g
=
est suspendue à un point O par un fil inextensible de longueur l=1m
et de masse négligeable. Le pendule ainsi constitué peut effectuer des oscillations de part et
d’autre de sa position d’équilibre. On l’écarte de la verticale d’un angle
0
30
θ
= °
et on
l’abandonne sans vitesse initiale.
On suppose les frottements négligeables et on prendra
1
9,8 .g N kg
=
1) Quelle est la position d’équilibre
éq
θ
du pendule ? Justifiez.
La position d ‘équilibre est
la position pour laquelle les
forces se compensent :
0
= °
éq
θ
2) Représenter les forces qui s’exercent
sur la bille lorsque le fil fait un angle
0
θ
avec la verticale.
3) Ces forces se compensent-elles ? Que peut-on en conclure sur le mouvement ?
Ces deux forces ne se compensent pas. La bille ne peut pas se maintenir dans cette position. Son
mouvement n’est pas rectiligne uniforme. Le mouvement est circulaire et accéléré dans la descente.
4) Exprimer littéralement le travail de chacune des forces au cours du mouvement (on ne
cherchera pas à faire l’application numérique)
( ) (1 cos30 )
AB
W P mgh mg
= + = × °
La tension du fil est toujours perpendiculaire au mouvement, son travail est donc nul.
5) Justifiez la conservation de la somme
Ec Epp
+
pour la bille du pendule. Quelle est la
transformation d’énergie qui s’effectue au cours du mouvement ?
constanteEc Epp
+ =
, on peut donc dire que l’énergie mécanique du système se conserve lors
du mouvement car il n’y a pas de frottements ; l’énergie cinétique se transforme en énergie
potentielle et vis-versa.
6) En déduire la vitesse de la bille lorsqu’elle repasse par sa position d’équilibre (écriture
littérale puis application numérique).
1
Ec Ep mv² 0 mgh 0,131J
2
= − ∆ = =
h l l cos l (1 cos ) 0,134m
= α = × α =
On en déduit
1mv² mgl (1 cos )
2
= × − α
Donc
1
v 2gl (1 cos ) 2 9,8 1(1 cos 30 ) 2, 63 1, 62m.s
= × α = × × ° = =
7) La masse de la bille intervient-elle dans l’expression de la vitesse ? Conclure sur la
période du mouvement ?
La vitesse ne dépend pas de la masse de la bille. La période est INDEPENDANTE de la masse
de la bille.
P
T
P
T
h
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !