European Patent Office

publicité
Patentamt
|||| ||| 1 1|| ||| ||| || ||| || | | || | | | | | | | |
J E u r o p aEuropean
i s c h e Patent
s
Office
Office europeen des brevets
(11)
EP
0 641
252
B1
E U R O P E A N PATENT S P E C I F I C A T I O N
(12)
(45) Date of publication and mention
of the grant of the patent:
17.12.1997 Bulletin 1997/51
(51) |nt. CI.6: B01 J 20/22,
B0-| j 20/32,'
. . . . . Application
-. . . number: 92918081.8
(21)
(86) International application number:
PCT/US92/06633
(22)
3 07.08.1992
x ' Date of filing:
.4
4 . . . publication
..
4. number:
(87) International
WO 93/02791 (18.02.1993 Gazette 1993/05)
C02F 1/28,
B01 J 4 5 / 0 0
(54) COMPOSITIONS AND PROCESSES FOR REMOVING, SEPARATING AND CONCENTRATING
DESIRED IONS FROM SOLUTIONS
ZUSAMMENSETZUNGEN UND VERFAHREN ZUR ENTFERNUNG, TRENNUNG UND
KONZENTRATION VON ERWUNSCHTEN IONEN AUS LOSUNGEN
COMPOSITIONS ET PROCEDES DE RETRAIT, DE SEPARATION ET DE CONCENTRATION DE
CERTAINS IONS DE SOLUTIONS
(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
SE
(30) Priority: 09.08.1991 US 743240
(43) Date of publication of application:
08.03.1995 Bulletin 1995/10
(73) Proprietor:
BRIGHAM YOUNG UNIVERSITY
Provo Utah 84602 (US)
(72) Inventors:
• BRUENING, Ronald, L.
Sandy, UT 84094 (US)
• TARBET, Bryon, J.
Highland, UT 84003 (US)
• IZATT, Reed, M.
Provo, UT 84606 (US)
• BRADSHAW, Jerald, S.
Provo, UT 84604 (US)
(74) Representative:
Grunecker, Kinkeldey,
Stockmair & Schwanhausser
Anwaltssozietat
Maximilianstrasse 58
80538 Munchen (DE)
(56) References cited:
EP-A- 0 364 824
US-A-5 071 819
US-A-5 039 419
CO
CM
IO
CM
CO
o
Q_
LU
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give
notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in
a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art.
99(1) European Patent Convention).
Printed byXerox (UK) Business Services
2.15.4/3.4
EP 0 641 252 B1
Description
FIELD OF THE INVENTION
This invention relates to thiol and/or thioether-aralkyl nitrogen-containing hydrocarbons covalently bonded to inorganic solid supports and to processes for removing, separating and concentrating certain desired ions from solutions
wherein such ions may be admixed with other ions which may be present in much higher concentrations by the use of
such thiol and/or thioether-aralkyl nitrogen supported materials. More particularly, this invention relates to a process for
removing such ions from an admixture with others in solution by forming a complex of the desired ions with compounds
10 composed of a thiol and/or thioether-aralkyl nitrogen hydrocarbon bonded to an inorganic matrix by flowing such solutions through a column packed with such thiol and/or thioether-aralkyl nitrogen-solid supported materials and then
selectively breaking the complex of the desired ion from the compounds to which such ion has become attached by
flowing a receiving liquid in much smaller volume than the volume of solution passed through the column to remove and
concentrate the desired ions in solution in the receiving liquid. The concentrated ions thus removed may then be recov15 ered by known methods.
5
BACKGROUND OF THE INVENTION
20
25
30
35
40
45
50
55
Effective methods for the recovery and/or separation of particular ions such as platinum, ruthenium, palladium, copper, osmium, gold, silver, and mercury ions in either cation or complex anion form from solutions thereof, admixed with
chelating agents and/or other ions which may be present, represent a real need in modern technology. As specific
examples, efficient and economical separation of (1) small amounts of Pt, Pd, Au, Ag, Os, Cu, and/or Ru from Rh and/or
Ir concentrates; (2) separation of Pt, Pd, Au, Ag, and/or Ru from solutions containing large amounts of base metals; and
(3) separation of Cu and/or Hg as toxic wastes from acidic solutions, all represent real separation needs with presently
either unsatisfactory technologies for their accomplishment, or for which more economical technologies are desired.
These ions are often present at low concentrations in solutions containing other ions at much greater concentrations.
Hence, there is a real need for a process to selectively concentrate and recover these ions.
It is known that molecules containing both the thioether and/or thiol sulfur atoms, as well as amine nitrogen atoms,
show strong and somewhat selective interactions with Pt, Pd, Au, Ag, Os, Cu, Ru, and Hg ions under acidic conditions.
These molecules also interact with a variety of base metal ions under nonacidic conditions. The synthesis and use of
molecules containing both thioether and/or thiol sulfur atoms, as well as simple amine nitrogen atom(s), covalently
bonded to inorganic solid supports has been previously described by Tarbet et.al. in copending patent application Serial
No. 7/236,763, filed August 26, 1988 titled "Sulfur and Nitrogen Containing Hydrocarbons and Process of Using Same
in Separating Desired Ions From Solutions Thereof," and in a pending continuation-in-part application Serial No.
7/542,013, filed June 22, 1990 and also in a pending divisional application Serial No. 7/545,209, filed June 28, 1990.
Only simple amine nitrogen atoms are disclosed in the pending Tarbet et al. patent applications. The synthesis and use
of simple monothioether-aniline moieties covalently bonded to silica gel have been reported by T. Seshadri et al. in "Silica-Immobilized 2-[(2-(triethoxysilyl)-ethyl)thio] aniline as a Selective Sorbent for the Separation and Preconcentration
of Palladium," Anal. Chem. 60, 47-52 (1988). These molecules described by Seshadri et. al. have reduced capacities
for all of the desired ions of current interest, except palladium. The kinetics of interaction with several of the ions are
quite slow, and the loss of interactive strength with increasing acidity above 0.1 M acid is also extensive for the ions of
interest except palladium. The effectiveness of these materials with palladium in HCI matrices >5 M has not been studied and a small potential for degradation with increasing acidity was also noted. Finally, neither Os nor Ru could be
eluted in any degree from these materials. The lower stability of these aniline based bound ligands is due in part to both
the use of the weaker binding aniline nitrogen and aromatic thiol sulfur donor atoms.
The products and processes described in the present invention overcome virtually all of the difficulties of the related
materials described above.
SUMMARY OF THE INVENTION
The unique properties of the thiol and/or thioether aralkyl nitrogen-containing hydrocarbon ligands as attached to
appropriate inorganic solid supports form the basis of the present invention. The compounds, methods of synthesis and
properties are described below. The invention also encompasses processes for using the compounds for the separation
of desired ions.
The compounds of the present invention comprise suitable thiol and/or thioether-aralkyl-nitrogen containing hydrocarbon ligands which are covalently bonded through a spacer grouping to a silicon atom and further covalently bonded
to a solid support and are represented by the following formula:
2
EP 0 641 252 B1
Z
R2
R2
R2
Matrix-0-Si-X-(ACH2CH):(BCH2CH)d(DCH2CH)eE
(Formula
1)
Y
10
15
20
25
30
35
40
45
so
55
In Formula 1, A and B are members independently selected from the group consisting of NR, N(R)CH2, S and
SCH2; D is a member selected from the group S and SCH2; E is a member selected from the group consisting of SH
and H; R is an aralkyl group wherein the aryl portion is a member selected from the group consisting of phenyl, naphthyl
and pyridyl and substituted derivatives thereof and the alkyl portion of the group contains one to three carbon atoms
with one being preferable; R2 is a member independently selected from the group consisting of H, SH, OH, lower alkyl,
and aryl, where aryl has the same meaning as given above; c is an integer from 1 to about 10; d and e are each integers
from 0 to about 10; with the following provisos: (1) when A is S or SCH2, d is an integer of 1 to 10 and at least one B is
NR or N(R)CH2; (2) when A is NR or N(R)CH2, e is 0 with the following subprovisos: (a) when d is 0, E is SH; (b) when
E is H, d is an integer of 1-10 and at least one B is S or SCH2. X is a spacer grouping either (1) having the formula:
(CH2)a(OCH2CHR1CH2)b
wherein R1 is a member selected from the group consisting of H, SH, OH, lower alkyl, and aryl, such as phenyl, naphthyl and pyridyl; a is an integer from 3 to about 10; b is an integer of 0 or 1; or (2) is an aralkyl group wherein the aryl
portion is as defined above for aryl and the alkyl contains from 1 to 6 carbon atoms. Y and Z are members independently selected from the group consisting of CI, Br, I, alkyl, alkoxy, substituted alkyl or substituted alkoxy and O-matrix
and matrix is selected from the group consisting of sand, silica gel, glass, glass fibers, alumina, zirconia, titania and
nickel oxide or other hydrophilic inorganic supports and mixtures thereof. When Y and Z moieties are other than Omatrix they are functionally classified as leaving groups, i.e. groups attached to the silicon atom which, when reacted
with an O-solid hydrophilic matrix material, may leave or be replaced by the O-matrix. If any such functional leaving
groups are left over after reacting a silicon containing spacer group or spacer/ligand group with the solid hydrophilic
matrix support material, these groups will have no direct function in the interaction between the desired ion and the thiol
and/or thioether-aralkyl-nitrogen containing hydrocarbon ligand attached to the solid support. Unless otherwise stated,
alkyl or alkoxy means 1 to 6 carbon member groups which may be substituted or unsubstituted, straight or branched
chain. Aryl and aralkyl groups may also be substituted. By substituted is meant by groups such as CI, Br, I, N02 and
the like which do not interfere with the functioning and/or operation of the compounds for the removal and separation of
the desired ions.
As can be seen from the above formula and provisos, there must always be at least one NR or N(R)CH2 group
present and at least one S, SCH2 or SH group present. Since R is an aralkyl group, the terminology a thiol(SH) and/or
thioether(S or SCH2)-aralkyl-nitrogen(NR or N(R)CH2) containing hydrocarbon ligand attached, through a spacer
grouping (X) to a solid support is appropriate.
X is a spacer grouping which is of a functional nature that it is sufficiently hydrophilic to function in an aqueous environment and will separate the ligand from the solid matrix support surface to maximize the interaction between the ligand and desired ion being separated. Representative of X are members such as glycidoxyalkyl, alkoxyalkyl, p(chloromethyl)phenyl and the like.
Those compounds where X is of the formula (CH2)a(OCH2CHR1CH2)b are preferred. The glycidoxyalkyl grouping
and particularly the 3-glycidoxypropyl group are most preferred. Also preferred are those compounds wherein R is benzyl. The preferred E group is SH. The preferred R2 grouping is H.
Within the above framework, suitable subgroupings include those where d is an integer of 1 to 10, A is a member
selected from the group consisting of NR or N(R)CH2 and B is a member selected from the group consisting of S and
SCH2. This provides a ligand having at least one benzylamine and at least one thioether and thiol grouping. A different
subgrouping is where d is an integer of 1 to 10, A is a member selected from the group consisting of S or SCH2 and at
least one B is a member selected from the group consisting of NR or N(R)CH2. This provides a ligand having a terminal
thiol and at least one thioether group separated by at least one benzylamine. Another subgrouping is where d and e are
each integers of 1 to 10, A and D are each members selected from the group consisting of S or SCH2 and at least one
B is a member selected from the group consisting of NR or N(R)CH2. This provides a ligand having thioethers on either
side of the benzylamine group and the ligand also terminates in a thiol group. A still different subgrouping is where d
and e are each 0 and A is a member selected from the group consisting of NR or N(R)CH2. This results in a benzylamine ligand terminating in a thiol group.
3
EP 0 641 252 B1
5
10
15
20
25
30
35
40
45
so
Exemplary of compounds within the above subgroupings are those wherein (1) A is NR, c is 1, B is S, d is 3, e is 0
and E is SH, i.e. a compound containing four S atoms and one aralkylamine group; (2) A is S, c is 2, B is NR, d is 1, D
is S, e is 1, and E is SH, i.e. a compound containing four S atoms and one aralkylamine group; and (3) A is NR, c is 1,
d and e are 0 and E is SH, i.e. a compound containing one S atom and one aralkylamine group. In the above, NR is
preferably benzylamine.
The use of the aralkyl, and particularly the benzyl, substituted nitrogen, instead of the simple amine or aniline nitrogens referred to in the background section above, enhances selectivity while the presence of alkyl thioether and/or thiol
sulfur atoms, including chains containing multiple sulfur atoms, overcomes the kinetic and interactive strength as well
as the stability problems encountered previously.
The presence of benzyl or other aralkyl containing nitrogens, rather than simple amino nitrogens, reduces the interaction of several base metals as well as Rh and Ir with the materials and, hence, increases the selectivity of the sulfur
plus nitrogen molecules for ions such as Palladium, Platinum, and Ruthenium. This enhanced selectivity is particularly
important relative to selectivity over metals present as complex anions such as the chloro complexes of Rh(lll), Ir(lll)
and Bi(lll) in HCI matrices. These complex anions have greater affinity for the more basic and sterically unhindered
amines when they are protonated and, hence, positively charged.
The thiol and/or thioether aralkyl nitrogen ligands covalently bonded to solid supports as shown in Formula 1 are
characterized by high selectivity for and removal of desired ions or groups of desired ions such as Pd4+, Pd2+, Pt4+,
Pt2+, Ru3+, Ru2+, Os4+, Cu+, Cu2+, Au3+, Au+, Ag+, and Hg2+ present at low concentrations from the source phase solution containing a mixture of these metal ions with the ions one does not desire to remove (i.e. referred to as "undesired
ions") present in much greater concentrations in the solution. The separation is accomplished, even in the presence of
other complexing agents or matrix constituents, particularly acids, in a separation device, such as a column, through
which the solution is flowed. The process of selectively removing and concentrating the desired ion(s) is characterized
by the ability to quantitatively complex from a larger volume of solution the desired ion(s) when they are present at low
concentrations. The desired ions are recovered from the separation column by flowing through it a small volume of a
receiving phase which contains a solubilizing reagent which need not be selective, but which will strip the desired ions
from the ligand quantitatively. The recovery of the desired metal ions from the receiving phase is readily accomplished
by known procedures.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
As summarized above, the present invention is drawn to novel thiol and/or thioether aralkyl nitrogen-containing
hydrocarbon ligands covalently bound through a spacer to a silicon moiety and further attached to a solid matrix or support, to form the compounds of Formula 1. The invention is also drawn to the concentration and removal of certain
desired ions such as Pd4+, Pd2+, Pt4+, Pt2+, Ru2+, Ru3+, Os4+, Au3+, Au+, Ag+, Cu2+, Cu+, and Hg2+ from other ions.
For example, effective methods of recovery and/or separation of metal ions from other metal ions, such as (1) the small
amounts of Pt, Pd, Au, Ag, Os, Cu, and/or Ru from Rh and/or Ir concentrates; (2) separation of Pd, Pt, Au, Ag, and/or
Ru from solutions containing large amounts of base metals; and (3) separation of Cu and/or Hg as toxic wastes from
acidic solutions represent a real need for which there are no feasible and established procedures or for which more economical processes are desired. Such solutions from which such ions are to be concentrated and/or recovered are
referred to herein as "source solutions." In many instances the concentration of desired ions in the source solutions will
be much less than the concentration of other or undesired ions from which they are to be separated.
The concentration of desired ions is accomplished by forming a complex of the desired ions with a compound
shown in Formula 1 by flowing a source solution containing the desired ions through a column packed with a Formula
1 compound to attract and bind the desired ions to the ligand portion of such compound and subsequently breaking the
ligand compound-complex by flowing a receiving liquid in much smaller volume than the volume of source solution
passed through the column to remove and concentrate the desired ions in the receiving liquid solution. The receiving
liquid or recovery solution forms a stronger complex with the desired ions than does the ligand portion of a Formula 1
compound and thus the desired ions are quantitatively stripped from the ligand in concentrated form in the receiving
solution. The recovery of desired ions from the receiving liquid is accomplished by known methods.
The thiol and/or thioether aralkyl nitrogen-containing ligand compounds, as represented by Formula 1, may be prepared by various methods which are illustrated in the examples which follow.
Example 1
55
In this example 2 grams of benzylamine was first reacted with 4.4 grams of 3-glycidoxypropyltrimethoxysilane at
room temperature. After allowing the mixture to react overnight, 1 equivalent of ethylene sulfide was added and again
reacted at room temperature overnight. After reaction, the mixture was warmed to 40-70°C and 34 grams of silica gel
(35-60 mesh) were added. The mixture was stirred and heated for an additional 8 hrs, filtered and dried under vacuum.
A compound was prepared corresponding to Formula 1 wherein the ligand is made up such that c is 1, and A is NR with
4
EP 0 641 252 B1
R being benzyl, R2 is H and d and e are 0, and E is SH. The spacer X is (CH2)a(OCH2CHR1CH2)b with a being 3, b
being 1 and R1 being OH. Y and Z are either O-matrix or methoxy. This compound has the formula:
OH
z
CH2C6HS
Matrix-0-Si-(CH2)3-OCH2CHCH2-NCH2CHrSH
I
Y
10
wherein Y and Z are either O-matrix or methoxy.
15
20
Example 2
Again following the procedure of Example 1, 2 grams of benzylamine was first reacted with 4.4 grams of 3-glycidoxypropyltrimethoxysilane at room temperature. After allowing the mixture to react overnight, 4 equivalents of ethylene
sulfide were added and again reacted at room temperature overnight. After reaction, the mixture was warmed to 4070°C and 34 grams of silica gel (35-60 mesh) were added. The mixture was stirred and heated for an additional 8 hrs,
filtered and dried under vacuum. A compound was prepared corresponding to Formula 1 wherein the ligand is made up
such that c is 1, and A is NR with R being benzyl, d is 3, B is S (all occurrences), R2 is H (all occurrences), e is 0, and
E is SH. The spacer X is (CH2)a(OCH2CHR1CH2)b with a being 3, b being 1 and R1 being OH. Y and Z are either Omatrix or methoxy. This compound has the formula:
OH
Z
CH2C{H5
Ma t r i x - O - Si - ( CH2 ) j -OCH2CHCH2 -NCHjCHj - ( SCH2CH2 ) j - S H
Y
30
wherein Y and Z are either O-matrix or methoxy.
35
40
45
Example 3
In this example 2 grams of benzylamine was first reacted with 4 equivalents of ethylene sulfide at room temperature. After allowing the mixture to react overnight, a small amount of sodium methoxide (1 mL of a 0.3 mole/L solution)
was added, followed by 3-glycidoxypropyltrimethoxysilane and the reaction mixture was warmed to 40-70°C. Silica gel
(35-60 mesh, 34 grams) was added after the mixture had reacted for 4-6 hrs. The mixture was stirred and heated for an
additional 18 hrs, filtered and dried under vacuum. A compound was prepared corresponding to Formula 1 wherein the
ligand is made up such that c is 2, and A is S (both occurrences), d is 1, B is NR with R being benzyl, e is 1, D is S, R2
is H (all occurrences), and E is SH. The spacer X is (CH2)a(OCH2CHR1CH2)b with a being 3, b being 1 and R1 being
OH. Y and Z are either O-matrix or methoxy. This compound has the formula:
Z
50
55
OH
CH2C6Hj
Matrix-0-Si-(CH2)3-OCH2CHCH2-(SCH2CH2)2-NCH2CH2-SCH2CH2SH
wherein Y and Z are either O-matrix or methoxy.
The process of selectively and quantitatively concentrating and removing a desired ion or group of desired ions
present at low concentrations from a plurality of other undesired ions in a multiple ion source solution in which the undesired ions, along with acid(s) and other chelating agents may be present at much higher concentrations, comprises
bringing the multiple ion containing source solution into contact with a thiol and/or thioether aralkyl nitrogen ligand-containing solid supported compound as shown in Formula 1 which causes the desired ion(s) to complex with the thiol
5
EP 0 641 252 B1
5
10
15
and/or thioether aralkyl nitrogen-containing ligand portion of the compound and subsequently breaking or stripping the
desired ion from the complex with a receiving solution which forms a stronger complex with the desired ions than does
the thiol and/or thioether aralkyl nitrogen-containing ligand or which forms a stronger complex with the thiol and/or
thioether aralkyl nitrogen-containing ligand. The receiving or recovery solution contains only the desired ions in a concentrated form.
The thiol and/or thioether aralkyl nitrogen-containing ligand solid matrix support functions to attract the desired ions
(Dl) according to Formula 2:
(Matrix-0)1.3-Si-X-L + DI^(Matrix-0)1.3-Si-X-L:DI
Except for Dl, Formula 2 is an abbreviated form of Formula 1 wherein L stands for the thiol and/or thioether aralkyl nitrogen-containing ligand. Dl stands for desired ion being removed. When Matrix-0 is less than three the other positions
are taken by Y and Z groups as described above.
Once the desired ions are bound to the thiol and/or thioether aralkyl nitrogen-containing ligand, they are subsequently separated by use of a smaller volume of a receiving liquid according to Formula 3:
(Matrix-OJ^-Si-X-LDI + RL -> (Matrix-O)!. 3-Si-X-L + RLDI
20
25
30
35
40
45
so
(Formula 2)
(Formula 3)
where RL stands for the receiving liquid.
The preferred embodiment disclosed herein involves carrying out the process by bringing a large volume of the
source multiple ion solution, which may contain hydrogen ions and may also contain chelating agents, into contact with
a thiol and/or thioether aralkyl nitrogen-containing ligand-solid support compound of Formula 1 in a separation column
through which the mixture is first flowed to complex the desired metal ions (Dl) with the thiol and/or thioether aralkyl
nitrogen-containing ligand-solid support compound as indicated by Formula 2 above, followed by the flow through the
column of a smaller volume of a receiving liquid (RL), such as aqueous solutions of thiourea, NH4OH, Na2S203, HI,
HBr, Nal, ethylenediamine, Na4EDTA, glycine, thiourea plus a reductive catalyst such as hypophosphorous acid, and
others which form a stronger complex with the desired ion than does the thiol and/or thioether aralkyl nitrogen-containing ligand bound to the solid support or forms a stronger complex with the thiol and/or thioether aralkyl nitrogen-containing ligand bound to solid support than does the desired ion. In this manner the desired ions are carried out of the
column in a concentrated form in the receiving solution as indicated by Formula 3. The degree or amount of concentration will obviously depend upon the concentration of desired ions in the source solution and the volume of source solution to be treated. The specific receiving liquid being utilized will also be a factor. The receiving liquid does not have to
be specific to the removal of the desired ions because no other ions will be complexed to the ligand. Generally speaking
the concentration of desired ions in the receiving liquid will be from 20 to 1,000,000 times greater than in the source
solution. Other equivalent apparatus may be used instead of a column, e.g., a slurry which is filtered which is then
washed with a receiving liquid to break the complex and recover the desired ion(s). The concentrated desired ions are
then recovered from the receiving phase by known procedures.
Illustrative of desired ions which have strong affinities for thiol and/or thioether aralkyl nitrogen-containing ligands
bound to solid supports are Pd(ll), Pt(IV), Pt(ll), Pd(IV), Ru(lll), Ru(ll), Au(lll), Os(IV), Au(l), Cu(l), Cu(ll), Ag(l), and
Hg(ll). This listing of preferred ions is not comprehensive and is intended only to show the types of preferred ions which
may be bound to thiol and/or thioether aralkyl nitrogen-containing ligands attached to solid supports in the manner
described above. The affinity of the ligand to the ions will obviously vary depending upon the ion and the ligand configuration. Hence it is possible that, even in the above listing, those ions having the stronger affinity for the ligand will be
selectively removed from other ions in the listing which have a weaker affinity for the particular ligand. Hence, by proper
choice of ligands and makeup of the source solution it is also possible to separate and concentrate one desired ion from
another. Therefore, the terminology "desired ions" and "undesired ions" is relative and the ion having the stronger affinity to the ligand will generally be the "desired" ion.
The process of the invention is particularly adaptable to the removal of Pd(ll), Pt(IV), Ag(l), Au(lll), and/or Ru(lll)
ions from source solutions which may additionally contain Rh(lll), Ir(lll), CI", and/or Br" ions. In these instances, the
receiving liquid for removing the ion(s) bound to the ligand will preferably be 0.5-1 .0 M Thiourea plus 0.1 M hypophosphorous acid.
Removal of Desired Molecules With Ligand-Matrix Compounds
55
The following examples demonstrate how the thiol and/or thioether aralkyl nitrogen-containing ligand bound to a
solid support compound of Formula 1 may be used to concentrate and remove desired ions. The thiol and/or thioether
aralkyl nitrogen-containing ligand containing solid support compound is placed in a column. An aqueous source solution containing the desired ion or ions, in a mixture of other undesired ions and/or chelating agents which may be in a
much greater concentration, is passed through the column. The flow rate for the solution may be increased by applying
6
EP 0 641 252 B1
5
10
15
20
25
30
pressure with a pump on the top or bottom of the column or applying a vacuum in the receiving vessel. After the source
solution has passed through the column, a much smaller volume of a recovery solution, i.e. an aqueous solution, which
has a stronger affinity for the desired ions than does the ligand, is passed through the column. This receiving solution
contains only the desired ion(s) in a concentrated form for subsequent recovery. Suitable receiving solutions can be
selected from the group consisting of HBr, thiourea, Nal, HI, NH4OH, ethylenediamine, Na4EDTA, Na2S203, glycine
and mixtures thereof as well as others such as thiourea plus a reductive catalyst such as hypophosphorous acid. The
preceding listing is exemplary and other receiving solutions may also be utilized, the only limitation being their ability to
function to remove the desired ions from the thioether aralkyl nitrogen-containing ligand.
The following examples of separations and recoveries of ions by the inorganic support-bound thiol and/or thioether
aralkyl nitrogen-containing ligands which were made as described in Examples 1 through 3 are given as illustrations.
These examples are illustrative only, and are not comprehensive of the many separations of ions that are possible using
the materials of Formula 1. However, separation of other desired ions may be accomplished as in the following examples and the exact process or procedure to be followed can be readily determined by one skilled in the art.
Example 4
In this example, 5 g of the thiol and benzylamine ligand containing compound shown in Example 1 was placed in a
column. A 100 ml source solution of 150 ppm (parts per million) Pt(IV) and 1000 ppm Rh(lll) in 1 M HCI was drawn
through the column. A 10 ml aqueous solution of 0.1 M HCI was then passed through the column as a receiving liquid
for Rh(lll). Analysis of the above solutions by Inductively Coupled Plasma Spectroscopy (ICP) showed that greater than
98% of the Rh(lll) ions originally in the 100 ml solution described above was in the 120 ml combined recovery solution
and that Pt could not be detected (<1 ppm) in the recovery solution. A 25 ml aqueous solution of 80°C 0.5 M thiourea,
0.1 M hypophosphorous acid was then passed through the column as a Pt(IV) receiving liquid. Analysis of this solution
by ICP showed that greater than 95% or the Pt(IV) ions originally in the 100 ml solution described above was in the 25
ml thiourea solution. Furthermore, 5 ppm Rh was detected in the thiourea solution and the column appeared white as
it did originally. This example demonstrates the separation of two ions, both of which are generally designated herein
as "desired ions" from each other.
Example 5
In this example, 5 g of the polythioether, thiol and benzylamine ligand containing compound shown in Example 2
was placed in a column. The experiment of Example 4 was repeated, with virtually identical results in effecting the separation of Rh(lll) and Pt(IV) ions from each other.
35
Example 6
40
In this example, 5 g of the of the polythioether, thiol and benzylamine ligand containing compound shown in Example 3 was placed in a column. A 100 ml solution or 150 ppm Pt(IV) and 1000 ppm Rh(lll) in 1 M NaCI and 0.1 M HCI
was drawn through the column. The rest of the procedure of Example 4 was followed with virtually identical results
again being obtained.
Example 7
45
50
55
In this example, 5 g of the polythioether, thiol and benzylamine ligand containing compound shown in Example 2
was placed in a column. A 50 ml source solution of 100 ppm Ru(lll) and 1000 ppm Rh(lll) in 0.1 M HCI was drawn
through the column. A 5 ml aqueous solution of 0.1 M HCI was then passed through the column. The Rh was quantitatively (within analytical error) recovered in the above solutions after passing through the column, while the Ru level was
reduced to less than 5 ppm. The Ru was then eluted using 70°C 1 M thiourea and 0.1 M HCI as a receiving liquid.
From these examples it will be appreciated that the thiol and/or thioether aralkyl nitrogen-containing ligands of Formula 1 bonded to a solid support, such as silica gel, provide materials useful for the separation and concentration of
ions such as Pd, Pt, Au, Ag, Ru, Os, Cu, and Hg from mixtures of these ions with other metal ions. This recovery may
be accomplished even in the presence of acids and/or complexing agents. The ions of interest can then be recovered
from the concentrated recovery solution by standard techniques known in the science of these materials.
Although the invention has been described and illustrated by reference to certain specific silica gel-bound thiol
and/or thioether aralkyl nitrogen-containing ligands falling within the scope of Formula 1 and the process of using them,
other analogs of these thiol and/or thioether aralkyl nitrogen-containing ligand compounds also falling within the scope
of Formula 1 are also within the scope of the invention as are processes of using them to separated and recover desired
ions. The invention is therefore limited only in scope by the following claims and functional equivalents thereof.
7
EP 0 641 252 B1
Claims
1. A method for the concentration, removal and separation of desired ions from a multiple ion source solution, which
may also contain hydrogen ions and/or chelating agents, which comprises,
(a) bringing said multiple ion source solution having a first volume into contact with a thiol and/or thioether
aralkyl nitrogen-containing ligand-solid support compound of the formula:
Z
R2
R*
r2
Matrix-0-Si-X-(ACH2CH)e(BCH2CH)d(DCH2CH)eE
Y
wherein
(i) A and B are members independently selected from the group consisting of NR, N(R)CH2, S and SCH2;
(ii) D is a member selected from the group S and SCH2;
(iii) E is a member selected from the group consisting of SH and H;
(iv) R is an aralkyl group wherein the aryl portion is a member selected from the group consisting of phenyl, naphthyl and pyridyl and substituted derivatives thereof and the alkyl portion of the group contains 1
to 3 carbon atoms;
(v) R2 is a member independently selected from the group consisting of H, SH, OH, lower alkyl, and aryl,
where aryl is a member selected from the group consisting of phenyl, naphthyl and pyridyl and substituted
derivatives thereof;
(vi) c is a integer from 1 to about 10;
(vii) d and e are each integers from 0 to about 10;
with the following provisos that when A is S or SCH2, d is an integer of 1 to 10 and at least one B is
NR or N(R)CH2 and when A is NR or N(R)CH2, e is 0 with the subprovisos that when d is 0, E is SH
and when E is H, d is an integer of 1 to 10 and at least one B is S or SCH2;
(viii) X is a spacer grouping selected from the group consisting of:
(CH2)a(OCH2CHR1CH2)b or aralkyl
wherein:
(a) R1 is a member selected from the group consisting of H, SH, OH, lower alkyl, and aryl, where
aryl is a member selected from the group consisting of phenyl, naphthyl and pyridyl and substituted derivatives thereof;
(b) a is an integer from 3 to about 10;
(c) b is an integer of 0 or 1;
(d) aralkyl is a group wherein the aryl portion is a member selected from the group consisting of
phenyl, naphthyl and pyridyl and substituted derivatives thereof and the alkyl portion contains
from 1 to 6 carbon atoms;
(ix) Y and Z are members independently selected from the group consisting of CI, Br, I, alkyl, alkoxy, substituted alkyl or substituted alkoxy and O-matrix; and
(x) matrix is selected from the group consisting of sand, silica gel, glass, glass fibers, alumina, zirconia,
titania and nickel oxide or other hydrophilic inorganic supports and mixtures thereof;
(b) removing source solution from contact with said compound to which said desired ions have been complexed; and
(c) contacting said compound having desired ions complexed thereto with a volume, smaller than said first volume, of a receiving solution having either a greater affinity for said desired ions than said compound or a
greater affinity for said compound than said desired ions thereby breaking said complex between said compound and said desired ions and recovering the desired ions in concentrated form in said smaller volume of
8
EP 0 641 252 B1
said receiving solution.
2.
A method according to Claim 1 wherein the desired ions to be separated are selected from the group consisting of
Pd4+, Pd2+, Pt4+, Pt2+, Ru3+, Ru2+, Os4+, Cu+, Cu2+, Au3+, Au+, Ag+ and Hg2+.
3.
A method according to Claim 2 wherein X is a spacer grouping having the formula (CH2)a(OCH2CHR1CH2)b.
4.
A method according to Claim 3 wherein R is benzyl.
5.
A method according to Claim 4 wherein X is a glycidoxyalkyl group.
6.
A method according to Claim 5 wherein X is 3-glycidoxypropyl.
7.
A method according to Claim 6 wherein E is SH.
8.
A method according to Claim 7 wherein R2 is H.
9.
A method according to Claim 8 wherein d is an integer of 1 to 10, e is 0, A is a member selected from the group
consisting of NCH2C6H5 or N(CH2C6H5)CH2, B is a member selected from the group consisting of S and SCH2.
10. A method according to Claim 9 wherein A is NCH2C6H5, c is 1, B is S and d is 3.
11. A method according to Claim 8 wherein d is an integer of 1 to 10, e is 0, A is a member selected from the group
consisting of S or SCH2 and at least one B is a member selected from the group consisting of NCH2C6H5 or
N(CH2C6H5)CH2.
12. A method according to Claim 8 wherein d and e are each integers of 1 to 10, A and D are each members selected
from the group consisting of S or SCH2 and at least one B is a member selected from the group consisting of
NCH2C6H5 or N(CH2C6H5)CH2.
13. A method according to Claim 12 wherein A is S, c is 2, B is NCH2C6H5, d is 1, D is S and e is 1.
14. A method according to Claim 8 wherein d and e are each 0 and A is a member selected from the group consisting
of NCH2C6H5 or N(CH2C6H5)CH2.
15. A method according to Claim 14 wherein A is NCH2C6H5 and c is 1.
16. A method according to Claim 3 wherein said compound is contained in a packed column and wherein said multiple
ion source solution is first flowed through said packed column to allow the formation of a complex between said
desired ions and said compound followed by the breaking of said desired ions from said compound and removal of
said desired ions from said packed column by flowing said receiving solution through said packed column and
recovering said desired ions in said receiving solution in concentrated from.
17. A method according to Claim 16 wherein said receiving solution is any solution having properties which allow for
the desired ions to be broken from said compound.
18. A method according to Claim 3 wherein a desired ion selected from the group consisting of Pt, Pd, Au, Ag, Os, Cu,
and Ru is separated from a multiple ion source solution also containing an undesired ion selected from the group
consisting of Rh and Ir.
19. A method according to Claim 3 wherein a desired ion selected from the group consisting of Pt, Pd, Au, Ag, and Ru
is separated from a multiple ion source solution also containing large amounts of base metals.
20. A method according to Claim 3 wherein a desired ion selected from the group consisting of Cu or Hg is separated
from toxic wastes.
21 . A thiol and/or thioether aralkyl nitrogen-containing ligand-solid support compound of the formula:
EP 0 641 252 B1
Z
R
R<
Rl
Ma t r i x - O - Si -X- ( ACHjCH ) c ( BCHjCH ) d ( DCHjCH ) , E
Y
wherein
(i) A and B are members independently selected from the group consisting of NR, N(R)CH2, S and SCH2;
(ii) D is a member selected from the group S and SCH2;
(iii) E is a member selected from the group consisting of SH and H;
(iv) R is an aralkyl group wherein the aryl portion is a member selected from the group consisting of phenyl,
naphthyl and pyridyl and substituted derivatives thereof and the alkyl portion of the group contains 1 to 3 carbon atoms;
(v) R2 is a member independently selected from the group consisting of H, SH, OH, lower alkyl, and aryl, where
aryl is a member selected from the group consisting of phenyl, naphthyl and pyridyl and substituted derivatives
thereof;
(vi) c is a integer from 1 to about 10;
(vii) d and e are each integers from 0 to about 10;
with the following provisos that when A is S or SCH2, d is an integer of 1 to 10 and at least one B is NR or
N(R)CH2 and when A is NR or N(R)CH2, e is 0 with the subprovisos that when d is 0, E is SH and when E
is H, d is an integer of 1 to 10 and at least one B is S or SCH2;
(viii) X is a spacer grouping selected from the group consisting of:
(CH2)a(OCH2CHR1CH2)b or aralkyl
wherein:
(a) R1 is a member selected from the group consisting of H, SH, OH, lower alkyl, and aryl, where aryl
is a member selected from the group consisting of phenyl, naphthyl and pyridyl and substituted derivatives thereof;
(b) a is an integer from 3 to about 10;
(c) b is an integer of 0 or 1;
(d) aralkyl is a group wherein the aryl portion is a member selected from the group consisting of phenyl, naphthyl and pyridyl and substituted derivatives thereof and the alkyl portion contains from 1 to 6
carbon atoms;
(ix) Y and Z are members independently selected from the group consisting of CI, Br, I, alkyl, alkoxy, substituted alkyl or substituted alkoxy and O-matrix; and
(x) matrix is selected from the group consisting of sand, silica gel, glass, glass fibers, alumina, zirconia, titania
and nickel oxide or other hydrophilic inorganic supports and mixtures thereof.
22. A compound according to Claim 21 wherein X is a spacer grouping having the formula (CH2)a(OCH2CHR1CH2)b.
23. A compound according to Claim 22 wherein R is benzyl.
24. A compound according to Claim 23 wherein X is a glycidoxyalkyl group.
25. A compound according to Claim 24 wherein X is 3-glycidoxypropyl.
26. A compound according to Claim 25 wherein E is SH.
27. A compound according to Claim 26 wherein R2 is H.
28. A compound according to Claim 27 wherein d is an integer of 1 to 10, e is 0, A is a member selected from the group
EP 0 641 252 B1
consisting of NCH2C6H5 or N(CH2C6H5)CH2, B is a member selected from the group consisting of S and SCH2.
29. A compound according to Claim 28 wherein A is NCH2C6H5, c is 1, B is S and d is 3.
5
10
30. A compound according to Claim 27 wherein d is an integer of 1 to 10, e is 0, A is a member selected from the group
consisting of S or SCH2 and at least one B is a member selected from the group consisting of NCH2C6H5 or
N(CH2C6H5)CH2.
31. A compound according to Claim 27 wherein d and e are each integers of 1 to 10, A and D are each members
selected from the group consisting of S or SCH2 and at least one B is a member selected from the group consisting
of NCH2C6H5 or N(CH2C6H5)CH2.
32. A compound according to Claim 31 wherein A is S, c is 2, B is NCH2C6H5, d is 1, D is S and e is 1.
15
33. A compound according to Claim 27 wherein d and e are each 0 and A is a member selected from the group consisting of NCH2C6H5 or N(CH2C6H5)CH2.
34. A compound according to Claim 33 wherein A is NCH2C6H5 and c is 1.
20
Patentanspruche
1. Verfahren zur Konzentration, Entfernung und Abtrennung erwiinschter lonen aus einer Quellosung fur viele lonen,
die auBerdem Wasserstoffionen und/oder Chelatbildner enthalten kann, das folgende Schritte umfaBt
25
(a) Inberiihrungbringen der Quellosung fur viele lonen mit einem ersten Volumen mit einem stickstoffhaltigen
Thiol- und/oder Thioetheraralkyl-Liganden auf einem festen Trager der Formel:
R2
R2
R2
Z
I
I
I
I
Mafrix-0-Si-X-(aCH2CH)e(BCH2CH)4(DCE2CH)eE
Y
35
wobei
40
(i) A und B Bestandteile sind, die unabhangig aus der Gruppe gewahlt sind, bestehend aus NR,
NR(R)CH2, S und SCH2;
(ii) D ist ein Bestandteil, ausgewahlt aus der Gruppe S und SCH2;
45
so
55
(iii) E ist ein Bestandteil, ausgewahlt aus der Gruppe, bestehend aus SH und H;
(iv) R ist eine Aralkylgruppe, wobei der Arylteil ein Bestandteil ist, ausgewahlt aus der Gruppe, bestehend
aus Phenyl, Naphthyl und Pyridyl und substituierten Derivaten davon und wobei der Alkylteil der Gruppe
1 bis 3 Kohlenstoffatome enthalt;
(v) R2 ist ein Bestandteil, unabhangig ausgewahlt aus der Gruppe, bestehend aus H, SH, OH, einem niedrigen Alkyl und Aryl, wobei Aryl ein Bestandteil ist, ausgewahlt aus der Gruppe, bestehend aus Phenyl,
Naphthyl und Pyridyl und substituierten Derivaten davon;
(vi) c ist eine ganze Zahl von 1 bis ungefahr 10;
(vii) d und e sind jeweils ganze Zahlen von 0 bis ungefahr 10;
mit den folgenden MaBgaben, daB, wenn A S Oder SCH2 ist, d eine ganze Zahl von 1 bis 10 ist und
mindestens ein B NR oder N(R)CH2 ist und daB, wenn A NR oder N(R)CH2 ist, e 0 ist, mit der weiteren
11
EP 0 641 252 B1
MaBgabe, daB, wenn d 0 ist, E SH ist und wenn E H ist, d eine ganze Zahl von 1 bis 10 ist und mindestens ein B S oder SCH2 ist;
(viii) X ist eine Abstandsgruppierung, ausgewahlt aus der Gruppe, bestehend aus:
(CH2)a(OCH2CHR1CH2)b oder Aralkyl
wobei:
(a) R1 ein Bestandteil ist, ausgewahlt aus der Gruppe, bestehend aus H, SH, OH, einem niedrigen Alkyl und Aryl, wobei Aryl ein Bestandteil ist, ausgewahlt aus der Gruppe, bestehend aus
Phenyl, Naphthyl und Pyridyl und subsituierten Derivaten davon;
(b) a ist eine ganze Zahl von 3 bis ungefahr 10;
(c) b ist eine ganze Zahl von 0 oder 1;
(d) Aralkyl ist eine Gruppe, wobei der Arylteil ein Bestandteil ist, ausgewahlt aus der Gruppe,
bestehend aus Phenyl, Naphthyl und Pyridyl und substituierten Derivaten davon und der Alkylteil
enthalt 1 bis 6 Kohlenstoffatome;
(ix) Y und Z sind Bestandteile, die unabhangig ausgewahlt sind aus der Gruppe, bestehend aus CI, Br, I,
Alkyl, Alkoxy substituiertem Alkyl oder substituiertem Alkoxy und O-Matrix; und
(x) die Matrix ist ausgewahlt aus der Gruppe, bestehend aus Sand, Silicagel, Glas, Glasfasern, Aluminiumoxid, Zirkoniumdioxid, Titanerde und Nickeloxid oder anderen hydrophilen anorganischen Tragern und
Mischungen davon;
(b) Entfernung der Quellosung aus der Beriihrung mit der Verbindung, an der die erwiinschten lonen komplexiert sind; und
(c) Inberiihrungbringen der Verbindung mit den daran komplexierten erwiinschten lonen mit einem Volumen,
das kleiner ist als das erste Volumen, einer Aufnahmelosung, die entweder eine groBere Affinitat fur die
erwiinschten lonen als die Verbindung aufweist oder eine groBere Affinitat fur die Verbindung als die
erwiinschten lonen aufweist, wodurch der Komplex zwischen der Verbindung und den erwiinschten lonen aufgebrochen wird und Gewinnung der erwiinschten lonen in konzentrierter Form in dem kleineren Volumen der
Aufnahmelosung.
2.
Verfahren nach Anspruch 1, wobei die erwiinschten lonen, die abgetrennt werden sollen, ausgewahlt sind aus der
Gruppe, bestehend aus Pd4+, Pd2+, Pt4+, Pt2+, Ru3+, Ru2+, Os4+, Cu+, Cu2+, Au3+, Au+, Ag+ und Hg2+.
3.
Verfahren nach Anspruch 2, wobei X eine Abstandsgruppierung mit der Formel (CH2)a(OCH2CHR1CH2)b ist.
4.
Verfahren nach Anspruch 3, wobei R Benzyl ist.
5.
Verfahren nach Anspruch 4, wobei X eine Glycidoxyalkylgruppe ist.
6.
Verfahren nach Anspruch 5, wobei X 3-Glycidoxypropyl ist.
7.
Verfahren nach Anspruch 6, wobei E SH ist.
8.
Verfahren nach Anspruch 7, wobei R2 H ist.
9.
Verfahren nach Anspruch 8, wobei d eine ganze Zahl von 1 bis 10 ist, e ist 0, A ist ein Bestandteil, ausgewahlt aus
der Gruppe, bestehend aus NCH2C6H5 oder N(CH2C6H5)CH2 und B ist ein Bestandteil, ausgewahlt aus der
Gruppe, bestehend aus S und SCH2.
10. Verfahren nach Anspruch 9, wobei A NCH2C6H5 ist, c ist 1, B ist S und d ist 3.
11. Verfahren nach Anspruch 8, wobei d eine ganze Zahl von 1 bis 10 ist, e ist 0, A ist ein Bestandteil, ausgewahlt aus
EP 0 641 252 B1
der Gruppe, bestehend aus S oder SCH2 und mindestens ein B ist ein Bestandteil, ausgewahlt aus der Gruppe,
bestehend aus NCH2C6H5 oder N(CH2C6H5)CH2.
5
12. Verfahren nach Anspruch 8, wobei d und e jeweils ganze Zahlen von 1 bis 10 sind, A und D sind jeweils Bestandteile, ausgewahlt aus der Gruppe, bestehend aus S oder SCH2 und mindestens ein B ist ein Bestandteil, ausgewahlt aus der Gruppe, bestehend aus NCH2C6H5 oder N(CH2C6H5)CH2.
13. Verfahren nach Anspruch 12, wobei A S bedeutet, c ist 2, B ist NCH2C6H5, d ist 1, Dist S und e ist 1.
10
14. Verfahren nach Anspruch 8, wobei d und e jeweils 0 sind und wobei A ein Bestandteil ist, ausgewahlt aus der
Gruppe, bestehend aus NCH2C6H5 oder N(CH2C6H5)CH2.
15. Verfahren nach Anspruch 14, wobei A NCH2C6H5 und c 1 ist.
15
20
16. Verfahren nach Anspruch 3, wobei die Verbindung in einer Fiillkorpersaule enthalten ist und wobei die Quellosung
mit multiplen lonen zunachst durch die Fiillkorpersaule flieBt, urn eine Bildung eines Komplexes zwischen den
erwiinschten lonen und der Verbindung zu ermoglichen, gefolgt von einem Abtrennen der gewiinschten lonen von
der Verbindung und Entfernung der erwiinschten lonen aus der Fiillkorpersaule, indem die Aufnahmelosung durch
die Fiillkorpersaule gefiihrt wird und Gewinnung der erwiinschten lonen in der Aufnahmelosung in konzentrierter
Form.
17. Verfahren nach Anspruch 16, wobei die Aufnahmelosung jede Losung mit Eigenschaffen ist, die ermoglichen, daB
die erwiinschten lonen von der Verbindung getrennt werden.
25
30
35
18. Verfahren nach Anspruch 3, wobei ein gewiinschtes Ion, das aus der Gruppe, bestehend aus Pt, Pd, Au, Ag, Os,
Cu und Ru ausgewahlt ist, aus einer Quellosung fur viele lonen abgetrennt wird, die ebenfalls ein unerwiinschtes
Ion enthalt, ausgewahlt aus der Gruppe, bestehend aus Rh und Ir.
19. Verfahren nach Anspruch 3, wobei ein erwiinschtes Ion, ausgewahlt aus der Gruppe, bestehend aus Pt, Pd, Au,
Ag und Ru aus einer Quellosung fur viele lonen abgetrennt wird, die auBerdem groBe Mengen Grundmetalle enthalt.
20. Verfahren nach Anspruch 3, wobei ein erwiinschtes Ion, ausgewahlt aus der Gruppe, bestehend aus Cu oder Hg
von toxischen Abfallen abgetrennt wird.
21. Ein stickstoffhaltiger Thiol- und/oder Thioetheraralkylligand, der an einen Festtrager gebunden ist, der Formel:
Z
R
R
Rz
Matrix-0-Si-X-(ACH2CH)c(BCH2CK)(i(DCH2CH)!E
Y
worin
so
(i) A und B Bestandteile sind, die unabhangig aus der Gruppe gewahlt sind, bestehend aus NR, NR(R)CH2, S
und SCH2;
(ii) D ist ein Bestandteil, ausgewahlt aus der Gruppe S und SCH2;
55
(iii) E ist ein Bestandteil, ausgewahlt aus der Gruppe, bestehend aus SH und H;
(iv) R ist eine Aralkylgruppe, wobei der Arylteil ein Bestandteil ist, ausgewahlt aus der Gruppe, bestehend aus
Phenyl, Naphthyl und Pyridyl und substituierten Derivaten davon und wobei der Alkylteil der Gruppe 1 bis 3
Kohlenstoffatome enthalt;
13
EP 0 641 252 B1
(v) R2 ist ein Bestandteil, unabhangig ausgewahlt aus der Gruppe, bestehend aus H, SH, OH, einem niedrigen
Alkyl und Aryl, wobei Aryl ein Bestandteil ist, ausgewahlt aus der Gruppe, bestehend aus Phenyl, Naphthyl und
Pyridyl und substituierten Derivaten davon;
(vi) c ist eine ganze Zahl von 1 bis ungefahr 10;
(vii) d und e sind jeweils ganze Zahlen von 0 bis ungefahr 10;
mit den folgenden MaBgaben, daB, wenn A S oder SCH2 ist, d eine ganze Zahl von 1 bis 10 ist und mindestens ein B NR oder N(R)CH2 ist und daB, wenn A NR oder N(R)CH2 ist, e 0 ist, mit der weiteren MaBgabe, daB, wenn d 0 ist, E SH ist und wenn E H ist, deine ganze Zahl von 1 bis 10 ist und mindestens ein
B S Oder SCH2 ist;
(viii) X ist eine Abstandsgruppierung, ausgewahlt aus der Gruppe, bestehend aus:
(CH2)a(OCH2CHR1CH2)b oder Aralkyl
wobei:
(a) R1 ein Bestandteil ist, ausgewahlt aus der Gruppe, bestehend aus H, SH, OH, einem niedrigen
Alkyl und Aryl, wobei Aryl ein Bestandteil ist, ausgewahlt aus der Gruppe, bestehend aus Phenyl,
Naphthyl und Pyridyl und subsituierten Derivaten davon;
(b) a ist eine ganze Zahl von 3 bis ungefahr 10;
(c) b ist eine ganze Zahl von 0 oder 1;
(d) Aralkyl ist eine Gruppe, wobei der Arylteil ein Bestandteil ist, ausgewahlt aus der Gruppe, bestehend aus Phenyl, Naphthyl und Pyridyl und substituierten Derivaten davon und der Alkylteil enthalt 1
bis 6 Kohlenstoffatome;
(ix) Y und Z sind Bestandteile, die unabhangig ausgewahlt sind aus der Gruppe, bestehend aus CI, Br, I, Alkyl,
Alkoxy, substituiertem Alkyl oder substituiertem Alkoxy und O-Matrix; und
(x) die Matrix ist ausgewahlt aus der Gruppe, bestehend aus Sand, Silicagel, Glas, Glasfasern, Aluminiumoxid,
Zirkoniumdioxid, Titanerde und Nickeloxid oder anderen hydrophilen anorganischen Tragern und Mischungen
davon.
22. Verbindung nach Anspruch 21 , wobei X eine Abstandsgruppierung mit der Formel (CH2)a(OCH2CHR1CH2)b ist.
23. Verbindung nach Anspruch 22, wobei R Benzyl ist.
24. Verbindung nach Anspruch 23, wobei X eine Glycidoxyalkylgruppe ist.
25. Verbindung nach Anspruch 24, wobei X 3-Glycidoxypropyl ist.
26. Verbindung nach Anspruch 25, wobei E SH ist.
27. Verbindung nach Anspruch 26, wobei R2 H ist.
28. Verbindung nach Anspruch 27, wobei d eine ganze Zahl von 1 bis 10 ist, e ist 0, A ist ein Bestandteil, ausgewahlt
aus der Gruppe, bestehend aus NCH2C6H5 oder N(CH2C6H5)CH2, B ist ein Bestandteil, ausgewahlt aus der
Gruppe, bestehend aus S und SCH2.
29. Verbindung nach Anspruch 28, wobei A NCH2C6H5 ist c ist 1, B ist S und d ist 3.
30. Verbindung nach Anspruch 27, wobei deine ganze Zahl von 1 bis 10 ist, e ist 0, A ist ein Bestandteil, ausgewahlt
aus der Gruppe, bestehend aus S oder SCH2 und mindestens ein Bist ein Bestandteil, ausgewahlt aus der Gruppe,
bestehend aus NCH2C6H5 oder N(CH2C6H5)CH2^
EP 0 641 252 B1
31. Verbindung nach Anspruch 27, wobei d und e jeweils ganze Zahlen von 1 bis 10 sind, A und D sind jeweils
Bestandteile, ausgewahlt aus der Gruppe, bestehend aus S oder SCH2 und mindestens ein Bist ein Bestandteil,
ausgewahlt aus der Gruppe, bestehend aus NCH2C6H5 oder N(CH2C6H5)CH2.
32. Verbindung nach Anspruch 31 , wobei A S ist, c ist 2, B ist NCH2C6H5, d ist 1, D ist S und e ist 1.
33. Verbindung nach Anspruch 27, wobei d und e jeweils 0 bedeuten und A ist ein Bestandteil, ausgewahlt aus der
Gruppe, bestehend aus NCH2C6H5 oder N(CH2C6H5)CH2.
34. Verbindung nach Anspruch 33, wobei A NCH2C6H5 ist und c ist 1.
Revendications
1.
Procede pour la concentration, I'enlevement et la separation d'ions desires d'une solution de source dons multiples, qui peut egalement contenir des ions d'hydrogene et/ou des agents de chelation, qui comprend :
(a) la mise en contact de cette solution de source dons multiples ayant un premier volume avec un compose
de support solideligand contenant du thiol et/ou du thioether-aralkyle-azote de la formule :
Z
R2
R2
r2
Matrice - o - s i - x - (
a c e 2 c e ) c ( bch2ce ) 4 ( d c e 2 c h ) eE
Y
dans laquelle :
(i) A et B sont des membres choisis independamment dans le groupe comprenant NR, N(R)CH2, S et
SCH2;
(ii) D est un membre du groupe comprenant S et SCH2;
(iii) E est un membre du groupe comprenant SH et H;
(iv) R est un groupe aralkyle dans lequel la partie aryle est un membre choisi dans le groupe comprenant
le phenyle, le naphtyle et le pyridyle et leurs derives substitues et la partie alkyle du groupe contient 1 a 3
atomes de carbone;
(v) R2 est un membre choisi independamment du groupe comprenant H, SH, OH, alkyle inferieur et aryle,
dans lequel aryle est un membre du groupe comprenant le phenyle, le naphtyle et le pyridyle et leurs derives substitues;
(vi) c est un nombre entier de 1 a environ 10;
(vii) d et e sont chacun des nombres entiers de 0 a environ 10;
aux conditions suivantes que lorsque A represents S ou SCH2, d soit un nombre entier de 1 a 10 et
au moins un B represents NR ou N(R)CH2 et lorsque A represents NR ou N(R)CH2, e soit egal a 0
avec les conditions supplementaires que lorsque d est egal a 0, E represente SH et lorsque E represente H, d soit un nombre entier de 1 a 10 et au moins un B represente S ou SCH2;
(viii) X est un groupement d'espacement choisi dans le groupe comprenant :
(CH2)a(OCH2CHR1CH2)b ou aralkyle
dans lequel :
(a) R1 est un membre choisi dans le groupe comprenant H, SH, OH, alkyle inferieur et aryle, aryle
etant un membre du groupe comprenant le phenyle, le naphtyle et le pyridyle et leurs derives
substitues;
(b) a est un nombre entier de 3 a environ 10;
(c) b est un nombre entier de 0 ou 1;
(d) aralkyle est un groupe dans lequel la partie aryle est un membre du groupe comprenant le
phenyle, le naphtyle et le pyridyle et leurs derives substitues et la partie alkyle contient de 1 a 6
atomes de carbone;
EP 0 641 252 B1
(ix) Y et Z sont des membres choisis independamment dans le groupe comprenant CI, Br, I, alkyle, alcoxy,
alkyle substitue ou alcoxy substitue et O-matrice; et
(x) la matrice est choisie dans le groupe comprenant le sable, le gel de silice, le verre, les fibres de verre,
I'alumine, la zircone, I'oxyde de titane et I'oxyde de nickel ou d'autres supports inorganiques hydrophiles
et leurs melanges;
5
(b) I'enlevement de la solution de source de tout contact avec le compose precite auquel lesdits ions desires
ont ete complexes; et
(c) le contact de ce compose contenant des ions desires complexes avec un volume, plus petit que le premier
volume susdit, d'une solution receptrice ayant soit une plus grande affinite pour lesdits ions desires que ledit
compose soit une plus grande affinite pour ledit compose que lesdits ions desires, en rampant ainsi le complexe entre le compose et les ions desires susdits et en recuperant les ions desires sous une forme concentree
dans ce plus petit volume de la solution receptrice.
10
15
20
25
30
35
40
45
50
55
2.
Procede suivant la revendication 1, dans lequel les ions desires a separer sont choisis dans le groupe comprenant
Pd4+, Pd2+, Pt4+, Pt2+, Ru3+, Ru2+, Os4+, Cu+, Cu2+, Au3+, Au+, Ag+ et Hg2+.
3.
Procede suivant la revendication 2, dans lequel X est un groupement d'espacement ayant la formule
(CH2)a(OCH2CHR1CH2)b.
4.
Procede suivant la revendication 3, dans lequel R est du benzyle.
5.
Procede suivant la revendication 4, dans lequel X est un groupe glycidoxyalkyle.
6.
Procede suivant la revendication 5, dans lequel X est un groupe 3-glycidoxypropyle.
7.
Procede suivant la revendication 6, dans lequel E est du SH.
8.
Procede suivant la revendication 7, dans lequel R2 est du H.
9.
Procede suivant la revendication 8, dans lequel d est un nombre entier de 1 a 10, e est egal a 0, A est un membre
du groupe comprenant NCH2C6H5 et N(CH2C6H5)CH2, B est un membre du groupe comprenant S et SCH2.
10. Procede suivant la revendication 9, dans lequel A represente NCH2C6H5, c est egal a 1, B represente S et d est
egal a 3.
11. Procede suivant la revendication 8, dans lequel d est un nombre entier de 1 a 10, e est egal a 0, A est un membre
du groupe comprenant S et SCH2 et au moins un B est un membre du groupe comprenant NCH2C6H5 et
N(CH2C6H5)CH2.
12. Procede suivant la revendication 8, dans lequel d et e sont chacun des nombres entiers de 1 a 10, A et D sont chacun des membres du groupe comprenant S et SCH2 et au moins un B est un membre du groupe comprenant
NCH2C6H5 et N(CH2C6H5)CH2.
13. Procede suivant la revendication 12, dans lequel A represente S, c est egal a 2, B represente NCH2C6H5, d est
egal a 1, D represente S et e est egal a 1.
14. Procede suivant la revendication 8, dans lequel d et e sont chacun egaux a 0 et A est un membre du groupe comprenant NCH2C6H5 et N(CH2C6H5)CH2.
15. Procede suivant la revendication 14, dans lequel A represente NCH2C6H5 et c est egal a 1.
16. Procede suivant la revendication 3, dans lequel le compose precite est contenu dans une colonne chargee et dans
lequel la solution de source d'ions multiples precitee est d'abord amenee a passer dans la colonne chargee pour
permettre la formation d'un complexe entre les ions desires et ledit compose suivie de la rupture desdits ions desires de ce compose et de I'enlevement de ces ions desires de la colonne chargee en faisant passer la solution de
reception dans la colonne chargee et en recuperant les ions desires dans la solution de reception sous une forme
concentree.
16
EP 0 641 252 B1
17. Procede suivant la revendication 16, dans lequel la solution de reception est une solution quelconque ayant des
proprietes qui permettent la rupture des ions desires du compose precite.
18. Procede suivant la revendication 3, dans lequel un on desire choisi dans le groupe comprenant Pt, Pd, Au, Ag Os,
Cu et Ru est separe d'une solution de source d'ions multiples contenant egalement un on indesire choisi dans le
groupe comprenant Rh et Ir.
19. Procede suivant la revendication 3, dans lequel un on desire choisi dans le groupe comprenant Pt, Pd, Au, Ag et
Ru est separe d'une solution de source d'ions multiples contenant egalement des grandes quantites de metaux de
base.
20. Procede suivant la revendication 3, dans lequel un ion desire choisi dans le groupe comprenant Cu et Hg est
separe de dechets toxiques.
21. Compose de support solide-ligand contenant du thiol et/ou thioether-aralkyle-azote de la formule :
R2
Z
Matrice-
o-ii-x-
R2
R2
( a c h 2 c h ) e ( bch2ch ) d ( dcHjCH ) ( e
Y
dans laquelle :
(i) A et B sont des membres choisis independamment dans le groupe comprenant NR, N(R)CH2, S et SCH2;
(ii) D est un membre du groupe comprenant S et SCH2;
(iii) E est un membre du groupe comprenant SH et H;
(iv) R est un groupe aralkyle dans lequel la partie aryle est un membre choisi dans le groupe comprenant le
phenyle, le naphtyle et le pyridyle et leurs derives substitues et la partie alkyle du groupe contient 1 a 3 atomes
de carbone;
(v) R2 est un membre choisi independamment du groupe comprenant H, SH, OH, alkyle inferieur et aryle, dans
lequel aryle est un membre du groupe comprenant le phenyle, le naphtyle et le pyridyle et leurs derives substitues;
(vi) c est un nombre entier de 1 a environ 10;
(vii) d et e sont chacun des nombres entiers de 0 a environ 10;
aux conditions suivantes que lorsque A represente S ou SCH2, d soit un nombre entier de 1 a 10 et au
moins un B represente NR ou N(R)CH2 et lorsque A represente NR ou N(R)CH2, e soit egal a 0 avec les
conditions supplementaires que lorsque d est egal a 0, E represente SH et lorsque E represente H, d soit
un nombre entier de 1 a 10 et au moins un B represente S ou SCH2;
(viii) X est un groupement d'espacement choisi dans le groupe comprenant :
(CH2)a(OCH2CHR1CH2)b ou aralkyle
dans lequel :
(a) R1 est un membre choisi dans le groupe comprenant H, SH, OH, alkyle inferieur et aryle, aryle
etant un membre du groupe comprenant le phenyle, le naphtyle et le pyridyle et leurs derives substitues;
(b) a est un nombre entier de 3 a environ 10;
(c) b est un nombre entier de 0 ou 1;
(d) aralkyle est un groupe dans lequel la partie aryle est un membre du groupe comprenant le phenyle, le naphtyle et le pyridyle et leurs derives substitues et la partie alkyle contient de 1 a 6 atomes
de carbone;
(ix) Y et Z sont des membres choisis independamment dans le groupe comprenant CI, Br, I, alkyle, alcoxy, alkyle substitue ou alcoxy substitue et O-matrice; et
(x) la matrice est choisie dans le groupe comprenant le sable, le gel de silice, le verre, les fibres de verre, I'alu-
EP 0 641 252 B1
mine, la zircone, I'oxyde de titane et I'oxyde de nickel ou d'autres supports inorganiques hydrophiles et leurs
melanges.
22. Compose suivant la revendication 21, dans lequel X est un groupement d'espacement ayant la formule
(CH2)a(OCH2CHR1CH2)b.
23. Compose suivant la revendication 22, dans lequel R est du benzyle.
24. Compose suivant la revendication 23, dans lequel X est un groupe glycidoxyalkyle.
25. Compose suivant la revendication 24, dans lequel X est un groupe 3-glycidoxypropyle.
26. Compose suivant la revendication 25, dans lequel E est du SH.
27. Compose suivant la revendication 26, dans lequel R2 est du H.
28. Compose suivant la revendication 27, dans lequel d est un nombre entier de 1 a 10, e est egal a 0, A est un membre du groupe comprenant NCH2C6H5 et N(CH2C6H5)CH2, B est un membre du groupe comprenant S et SCH2.
29. Compose suivant la revendication 28, dans lequel A represente NCH2C6H5, c est egal a 1, B represente S et d est
egal a 3.
30. Compose suivant la revendication 27, dans lequel d est un nombre entier de 1 a 10, e est egal a 0, A est un membre du groupe comprenant S et SCH2 et au moins un B est un membre du groupe comprenant NCH2C6H5 et
N(CH2C6H5)CH2.
31. Compose suivant la revendication 27, dans lequel d et e sont chacun des nombres entiers de 1 a 10, A et D sont
chacun des membres du groupe comprenant S et SCH2 et au moins un B est un membre du groupe comprenant
NCH2C6H5 et N(CH2C6H5)CH2.
32. Compose suivant la revendication 31 , dans lequel A represente S, c est egal a 2, B represente NCH2C6H5, d est
egal a 1, D represente S et e est egal a 1.
33. Compose suivant la revendication 27, dans lequel d et e sont chacun egaux a 0 et A est un membre du groupe
comprenant NCH2C6H5 et N(CH2C6H5)CH2.
34. Compose suivant la revendication 33, dans lequel A represente NCH2C6H5 et c est egal a 1.
18
Téléchargement