Matériaux 1 :
Obtention d’un métal par pyrométallurgie :
diagrammes d’Ellingham
Exercices d’entraînement
1. Constante d’équilibre
La constante d’équilibre de la réaction modélisée par l’équation : 4/3 Al
(s)
+ ZrO
2(s)
= 2/3 Al
2
O
3(s)
+ Zr
(s)
est
égale à 1 puisque tous les constituants sont des phases condensées pures.
a) Vrai
b) Faux
2. Axe vertical du diagramme
On peut placer indifféremment en ordonnée sur un diagramme d’Ellingham, tracé avec la convention que le
nombre stœchiométrique de O
2
égal à -1, deux grandeurs : Δ
r
G° et RT ln(P
O2
/P°).
a) Vrai
b) Faux
On peut placer indifféremment en ordonnée du diagramme d’Ellingham Δ
r
G° et Δ
r
G.
a) Vrai
b) Faux
3. Cinétique
Deux espèces qui ont des domaines de stabilité disjoints réagissent de façon quantitative et rapide ensemble.
a) Vrai
b) Faux
4. Attribution de domaines
Dans le cas d’un métal et de son oxyde (non miscibles), justifier que l’oxyde soit au-dessus de la droite
frontière.
5. Equations d’oxydation sèche
On dénombre plusieurs couples d’oxydo-réduction par voie sèche pour l’élément fer : FeO/Fe, Fe
3
O
4
/FeO,
Fe
3
O
4
/Fe
2
O
3
et Fe
3
O
4
/Fe.
1. Calculer le nombre d’oxydation du fer dans chacun de ces composés.
2. Ecrire pour chaque couple l’équation d’oxydation par voie sèche en adoptant la convention que le nombre
stœchiométrique du dioxygène est pris égal à - 1.
6. Superposition de deux diagrammes
On a tracé ci-contre les diagrammes d’Ellingham des couples
MgO/Mg et Al
2
O
3
/Al.
1. Attribuer les systèmes de segments à chaque couple
sachant qu’au-dessus de 1750 K, l’aluminium réduit
quantitativement l’oxyde de magnésium.
2. Que se passe-t-il respectivement en A, B et C ?
7. Diagramme d’Ellingham du zinc
Tracer le diagramme d’Ellingham du zinc entre 300 et 1600 K en prenant comme convention que le nombre
stœchiométrique de O
2
est égal à -1.
Données :
à 298 K Zn
(s)
ZnO
(s)
O
2(g)
S
i
° (J.K
-
1
.mol
-
1
) 42,0 44,0 205
Δ
f
H
i
° (kJ.mol
-
1
) 0 - 348 0
T
fus
= 693 K et Δ
fus
H° = 7,00 kJ.mol
-1
T
vap
= 1180 K et Δ
vap
H° = 115 kJ.mol
-1
8. Diagramme d’Ellingham du carbone
On considère le carbone solide et ses deux oxydes gazeux CO et CO
2
. Pour l’un des couples C
(s)
/CO
(g)
ou
CO
(g)
/CO
2(g)
, Δ
r
1
= - 568 + 0,175 T et pour l’autre, Δ
r
2
= - 220 - 0,180 T. Ces grandeurs standard de réaction
sont données pour un nombre stœchiométrique égal à – 1 pour le dioxygène gazeux.
1. Attribuer à chaque couple la bonne expression de Δ
r
G°. Tracer le diagramme d’Ellingham et attribuer les
domaines aux différentes espèces. S’agit-il de domaines de prédominance ?
2. Montrer que l’une des espèces n’est pas stable sur un domaine de température à préciser.
3. Simplifier en conséquence le diagramme précédent.
Réflexion pratique / Sens physique
9. Âge du cuivre / Âge du fer
Pourquoi l’âge du cuivre (chalcolithique) a-t-il précédé l’âge du fer ?
Exercices d’approfondissement
10. Le chrome et ses oxydes
Le trioxyde de chrome (VI) est utilisé dans la synthèse des rubis artificiels, solutions solides d’alumine Al
2
O
3
et
d’oxyde de chrome (III). On étudie sa stabilité à l’air libre. Pour cela, on considère la réaction suivante :
4 CrO
3(s)
= 2 Cr
2
O
3(s)
+ 3 O
2(g)
1. Calculer le nombre d’oxydation du chrome dans ces deux molécules.
2. Calculer l’enthalpie libre standard de cette réaction à 300 K, en se plaçant dans l’approximation
d’Ellingham, que l’on rappellera.
3. Montrer que le trioxyde de chrome (VI) est instable à 300 K en présence d’air (on prendra P(O
2
) = 0,2 bar).
Que doit-il advenir, théoriquement, d’un cristal de trioxyde de chrome (VI) lais à l’air ambiant ? On
donne RT ln(0,2) = − 4,0 kJ.mol
−1
.
4. Montrer sans calcul supplémentaire que l’instabilité demeure si T > 300K.
5. On donne ci-après le diagramme d’Ellingham des couples Cr
2
O
3
/Cr et Al
2
O
3
/Al, représenté pour une mole
de O
2
échangé. Ecrire les équation-bilans donnant la réaction de formation de chaque oxyde.
6. Aux points A, B et C, on observe un faible changement de pente. A quel phénomène physique correspond
chacun de ces points ?
7. Calculer la pente des segments NB et BC.
8. Ecrire l’équation-bilan de la réduction d’une mole d’oxyde de chrome (III) par l’aluminium à 300K.
L’enthalpie standard de cette réaction vaut 560 kJ.mol
-1
. Utiliser le diagramme pour terminer le signe
de l’affinité chimique de cette réaction à toute température. Conclure sur la possibilité thermodynamique
de réduction de Cr
2
O
3
par l’aluminium.
Données :
Al
(s)
Al
2
O
3(s)
Cr
(s)
CrO
3(s)
Cr
2
O
3(s)
O
2(g)
f
H° (kJ.mol
−1
) 0 − 1700 0 − 590 − 1140 0
S
m
° (J.K
−1
.mol
−1
) 27 51 24 73 81 205
T
fus
(°C) 660 2050 1910 2440
H° (kJ.mol
−1
) 10 110 20
T
éb
(°C) 2520 2980 2670 4000
vap
H° (kJ.mol
−1
) 290 350
11. Le fer et ses oxydes
Données : Enthalpies molaires standard de formation
f
H° et entropies molaires standard S° de quelques corps
à la température de 298 K :
Fe(s) O
2(g)
FeO(s) Fe
3
O
4
(s) Fe
2
O
3
(s)
Δ
f
H° (kJ.mol
-
1
) 0 ? - 259,6 - 1091 - 810,9
S° (J.K
-
1
.mol
-
1
) 27,20 205,0 67,10 178,8 106,5
Le diagramme ci-dessous représente les variations, avec la température, de l’enthalpie libre standard des
réactions suivantes, le fer et ses oxydes sont à l’état solide, et l’on considère qu’ils ne sont pas miscibles
entre eux :
(1) 2 Fe + O
2
= 2 FeO Δ
r
G
1
°(T)
(2) 6 FeO + O
2
= 2 Fe
3
O
4
Δ
r
G
2
°(T) = - 624,8 + 0,2500.T (en kJ.mol
-1
)
(3) 4 Fe
3
O
4
+ O
2
= 6 Fe
2
O
3
Δ
r
G
3
°(T) = - 500,6 + 0,2812.T (en kJ.mol
-1
)
(4) 3/2 Fe + O
2
= ½ Fe
3
O
4
Δ
r
G
4
°(T)
1) Présentation du diagramme :
a) Etablir numériquement l’équation de la droite (1). Justifier que
f
H° (Fe, solide) = 0.
b) Quel nom porte ce diagramme ? Si on prolonge les segments de droites à des températures plus
importantes, des ruptures de pentes apparaissent : à quoi correspondent-elles dans le cas la pente
augmente (respectivement diminue) ?
c) Calculer la valeur de la température T
A
à laquelle se croisent les droites (1) et (2). Justifier que (4) passe
également par ce point.
d) Le composé FeO est-il stable quelle que soit la température ? Modifier le diagramme fourni en
conséquence.
e) Calculer la valeur de la température T
B
à laquelle la droite (3) coupe l’axe horizontal y = 0 du
diagramme. Quelle est sa signification physique ?
2) Oxydation du fer dans différentes situations :
a) On place un morceau de fer dans une enceinte fermée contenant du dioxygène pur que l’on maintient
à la pression P = 1 bar et à la température T. Indiquer de quoi se compose le système lorsque l’état final
est atteint. (On distinguera deux sous cas).
b) On place à nouveau un morceau de fer dans une enceinte fermée, à la température T = 700 K,
contenant du dioxygène. Il se produit alors une oxydation du fer et on constate que lorsque l’équilibre
thermodynamique est atteint, il reste du fer métallique. Indiquer quels sont les autres corps présents et
calculer la pression de dioxygène à l’équilibre.
c) On place à nouveau un morceau de fer dans une enceinte fermée, à la température T = 1000 K,
contenant du dioxygène. Il se produit alors une oxydation du fer et on constate que lorsque l’équilibre
thermodynamique est atteint, il reste du fer métallique. Indiquer quels sont les autres corps présents.
d) Indiquer si les systèmes suivants peuvent être à l’équilibre :
α) Mélange de FeO et de Fe
2
O
3
β) Mélange de Fe
3
O
4
et de Fe
2
O
3
γ) Mélange de FeO et de Fe
3
O
4
e) Dans une enceinte fermée initialement vide de volume constant, on place 1 mol de Fe. A la
température de T = 700 K maintenue constante, on introduit n mole de dioxygène gazeux. Donner
l’allure de la courbe P = f(n).
3) Aluminothermie des oxydes de fer :
a) Superposer au diagramme précédent la droite associée à l’équation bilan
(5) 4/3 Al + O
2
= 2/3 Al
2
O
3
et d’équation : Δ
r
5
(T) = - 1126 + 0,220 T
b) Que peut-on en déduire quant aux réactions de réduction des différents oxydes de fer par l’aluminium
? Démontrer rigoureusement le résultat.
12. Mercure et ses oxydes
On donne ci-dessous les diagrammes d'Ellingham, donnant l'enthalpie libre standard (en kJ.mol
−1
) de quelques
réactions d'oxydation par le dioxygène, ramenées à une mole de dioxygène gazeux.
1. A quelle condition obtient-on des portions linéaires sur ces diagrammes ?
2. Que représentent l'ordonnée à l'origine et la pente d'une droite ?
3. Afin d'analyser la stabilité de l'oxyde mercurique, on étudie le diagramme associé à la réaction :
2 Hg + O
2
= 2 HgO
a) A l'aide du diagramme d'Ellingham et de la question 2, prévoir quelle est l'influence d'une
augmentation de température, à pression et composition constantes sur l'équilibre :
2 Hg
(ℓ)
+ O
2(g)
= 2 HgO
(s)
(1)
b) Quelle est l’origine du changement de pente sur la courbe d'Ellingham du mercure ?
c) Exprimer l'affinité chimique de la réaction (1) en fonction de l'enthalpie libre standard de la réaction,
de la pression en dioxygène et de la température T. Peut-on obtenir du mercure liquide par simple
chauffage de HgO solide sous P(O
2
) = 0,2 bar (pression en dioxygène dans l'air atmosphérique) ?
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !