1
Lycée Ahmed Tlili Ksar Gafsa 2016-2017 4ème Sc.Exp
SERIE N°4 Chapitre : Circuit RLC série
Exercice N° 1 :
On réalise l’étude expérimentale d’un circuit constitué par :
- Un condensateur de capacité C = 8µF initialement chargé,
la tension à ses bornes est U0 = 5V.
- Une bobine purement inductive d’inductance L (r = 0).
- Un résistor de résistance R0 réglable.
- Un interrupteur K.
A un instant t0 choisi comme origine des temps, on ferme l’interrupteur K. A l’aide d’un système d’acquisition, on
réalise les enregistrements représentés sur le document -2- représentant les variations de la tension uAM (t) aux
bornes du condensateur et de l’énergie magnétique EL emmagasinée dans la bobine en fonction du temps.
I/ 1- a- Donner l’expression de l’énergie
magnétique EL en fonction de L et i.
b- Montrer que la courbe 2 correspond à EL.
2- Montrer que les oscillations de uAM (t) sont libres et amorties.
II/ 1- Etablir l’équation différentielle régissant les variations de la charge q du condensateur en respectant
l’orientation du circuit du document -1-.
2- a- Donner l’expression de l’énergie totale E du circuit en fonction de C, q, L et i.
b- Montrer que l’énergie totale de l’oscillateur n’est pas conservée.
b- Déterminer les valeurs E0 et E1 des énergies totales du circuit aux instants t0 = 0s et t1 = 44,75ms.
Déduire la valeur de l’énergie dissipée par effet joule dans le circuit durant Δt = t1 – t0.
III/ On réalise les 3 acquisitions de la tension uAM au cours des trois expériences ou l’on modifie la valeur de R0.
Les valeurs correspondantes sont regroupées dans le tableau ci-contre :
Expérience
(1)
(2)
(3)
Valeur de R0
100
632,5
1000
On obtient les courbes (a), (b) et (c) du document -3- . La courbe (c) représente le retour le plus rapide du système
RLC à son équilibre. Reproduire et compléter le tableau suivant :
Courbe
(a)
(b)
Expérience N°
Régime
Physique
uAM (V)
0
t(ms)
c
a
b
Document -3-
L, r = 0
A
K
.
.
M
R0
t(ms)
u
AM
(V), E
L
J)
0
U
0
π
20,7
t1 = 44,75
2
1
Document-2-
Document -1-
2
Exercice N° 2 :
On réalise le montage expérimental schématisé sur la figure ci-contre.
Données :
Le condensateur est de capacité C = 1µF ;
(G) est un générateur idéal de f.é.m. E = 20V et de résistance interne négligeable ;
La bobine est purement inductive d’inductance L.
1- L’interrupteur (K) est basculé sur la position (1) (voir figure). Après une brève durée, la plaque (A) porte la
charge maximale Q0 et l’énergie emmagasinée par le condensateur est W0. Calculer Q0 et W0.
2- On bascule (K) sur la position (2) à t = 0. A l’aide d’un oscilloscope, on visualise la courbe représentant les
variations de la tension uC (t) entre les bornes du condensateur en fonction du temps (voir figure ci-dessous).
a- Montrer, à partir de cette courbe, que le circuit LC est le siège d’oscillations libres non amorties.
b- Etablir l’équation différentielle régissant les variations de la tension uC en fonction du temps et montrer
qu’elle s’écrit sous la forme :  ()
+ω
u(t) = 0
Où ω0 est la pulsation propre de l’oscillateur que l’on explicitera.
3-
a- La solution de l’équation différentielle précédente est de la forme : uC (t) = Um sin (ω0t + ϕ)
Déterminer les valeurs de Um, ω0 et ϕ.
b- En déduire la valeur de l’inductance L de la bobine.
4-
a- Exprimer l’énergie électromagnétique W du circuit LC à une date t quelconque et montrer qu’elle est
constante.
b- En exploitant la conservation de l’énergie électromagnétique W déduire la valeur maximale Im de
l’intensité du courant dans le circuit.
Exercice N° 3 :
I/ Dans une première expérience : On réalise le circuit suivant comportant :
- un condensateur de capacité C = 0,1 μF ;
- une bobine d’inductance L et de résistance négligeable ;
- un générateur qui délivre une tension continue U0 et un commutateur (K).
1- Le commutateur étant en position (1). Exprimer l’énergie E0 emmagasinée dans le condensateur en fonction de
C et U0.
2- A l’ instant de date t = 0s, on bascule (K) en position (2). Etablir l’équation différentielle en q de l’oscillateur ainsi
obtenu.
uC (V)
0
-20
t(10-4 s)
20
0
π
E
C
L
u
C
A
K
(1)
(2)
.
.
.
B
L
C
E
(1)
(2)
K
Figure 1
3
3-
a- Donner l’expression de l’énergie électromagnétique totale E emmagasinée dans le circuit LC en fonction de q,
i, L et C.
b- Montrer que l’énergie E se conserve au cours du temps.
4- Exprimer l’énergie EC emmagasinée dans le condensateur en fonction de i2.
5- Une étude expérimentale permet de tracer la courbe ci-contre.
a- Déterminer à partir de la courbe : la valeur de l’inductance L ; la valeur maximale Im de l’intensité de
courant.
b- Déterminer la période propre T0 de l’oscillateur.
c- Montrer que Im =
.U0 en déduire la valeur de Uo.
6- Représenter sur le même graphe EL (énergie magnétique) en fonction de i2.
II/ Deuxième expérience : Dans le montage précédent on ajoute un résistor de résistance R entre le condensateur et
la bobine. Le condensateur est préalablement chargé. A t=0s on bascule l'interrupteur en position 2.
Le dispositif d'acquisition donne les courbes d'évolution de i(t) et de uc(t) sur la figure du Document ci- dissous.
1- Nommer le type d'oscillations observées. Préciser le régime des oscillations.
2- Entre les instants de dates t1 et t2, le condensateur se charge ou se décharge-t-il? Justifier la réponse.
3- On donne l'équation différentielle vérifiée par uc(t) : .
+
 +
=.
a- Donner l’expression de l’énergie totale emmagasinée par le circuit R, L, C à un instant t donné.
b- Montrer que 
 =. (
 ).Conclure.
c- Calculer la variation de l’énergie totale ΔE entre t0=T/4 s et t3= 4ms
EC (10-3 J)
i2 (10-5 A2)
10
0
0,05
Figure 2
0,04
0,03
0,02
0,01
2,5
5
7,5
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !