•f T f0T
f(x) = sin(x2)T f0(x) = 2xcos(x2) + sin(x2)
f0(√2nπ)=2√2nπ f0R
R→Rf
x1< x2< x3f(x1)> f(x2)f(x2)< f(x3)f
u f(x2)<u<inf{f(x1), f(x3)}
x1< s < x2x2< t < x3f(s) = u=f(t)s < t f
R→Rf◦f(x) = −x x f
f
f◦f f ◦f(x) = −x x
f∈C0(R)f◦f◦f(x) = x, ∀x∈R
f◦f◦f(x) = f◦(f◦f)(x) = x f f(a) = f(b)
a=f◦f◦f(a) = f◦f◦f(b) = b
f f ◦f f ◦f◦f
f x ∈Rx f(x)
f(x)< x f(x)> x f(x) = x f(x)> x f
x=f◦f◦f(x)> f(f(x)) > f(x)> x f(x)< x f(x) = x x
f(x) = x, x ∈R
f∈C0(R)f◦f(x) = f(x),∀x∈R
Ef:= {x∈R:f(x) = x}f
f(R)x∈Rf(x) = f(f(x)) f(x)∈Ef
Ef⊂f(R)Ef=f(R)f(x) = x
x∈f(R)f◦f=f f(R)
A f f(x) = x A A
A A = [−1,1] f
f(x) = x x ∈[−1,1] f(x) = 2 −x x ∈[1,2] [2,+∞[f(R) = [−1,1]
f(x) = x f(R)=[−1,1]
m > n > 0 lim
x→0
(cos x)1/m −(cos x)1/n
x2.
•(cos x)1/m −(cos x)1/n
x2=(cosnx)1/nm −(cosmx)1/nm
x2
amn −bmn = (a−b)(amn−1+bamn−2+··· +bmn−1)a= (cosnx)1/nm, b =
(cosmx)1/nm
(cosnx)1/nm −(cosmx)1/nm
x2=cosnx−cosmx
x2(mn
p(cosnx)nm−1+··· +mn
p(cosmx)nm−1)