Devoir 1 exercice 2 : Pour tout entier n ∈ N Feuille 1 exercice 3

nN?En:= {k+n
k, k N?}
Eninf En:= inf{k+n
k,1kn}
nN?inf En4n
EnR+0 limk(k+n
k) = +En
k=n k +n
k=n+ 1 kn+ 1 k+n
kn+1+n
k> n + 1
inf En:= inf{k+n
k,1kn}
inf En4n k +n
k4n
(k+n
k)24n(kn
k)20 inf En4n
(kn
k)2= 0 n=k2n
f:RRf
f+
f:RRl+
limnf(xn) = l(xn)n+f
a6=b f(a)6=f(b)f T f(a+nT ) = f(a)6=f(b) = f(b+nT )
nZlimnf(a+nT ) = f(a)6=f(b) = limnf(b+nT )
limna+nT = limnb+nT = +f
nN?:n+ 1 n < 1/2n < nn1
1
21
2+1
3+··· +1
10000
n+ 1 n=1
n+1+n<2
nn
n1 = 1
n+n1>2
nn+ 1 n <
1/2n < nn1n∈ {2,3,...,10000}100 2 = 10000 2<
1
21
2+1
3+··· +1
10000 <10000 1 = 99 98
f(x) = sin(x2)
f(x)=0 x=±kπ, k Zf T > 0T
f T = 0 f0f(T) = f(T+ 0) = f(0) = 0 k0N?
T=k0ππ2π T f(π+2π) = sin(22π)6= 0
f(T+π) = f(π)=0 k0π+π=kπ k Zk0+1+2k0=k
k0=q2qQf(T+2π) = f(2π)=0
1+22k0=k02ko=q02, q Q2ko=q02k0=q2
2 = p0/p Q
f xk:= kπ, k N
xk+1 xk=π
k+1+kkπ
2k
f T f T [kπ, kπ +T]
k2Tk
π
< kπ+1 f T [kπ, kπ+T]
[0, T ]f
R R f(x) =
sin(x2)R|f(xn)f(xn+1)|xn=2
f T f0T
f(x) = sin(x2)T f0(x) = 2xcos(x2) + sin(x2)
f0(2)=22nπ f0R
RRf
x1< x2< x3f(x1)> f(x2)f(x2)< f(x3)f
u f(x2)<u<inf{f(x1), f(x3)}
x1< s < x2x2< t < x3f(s) = u=f(t)s < t f
RRff(x) = x x f
f
ff f f(x) = x x
fC0(R)fff(x) = x, xR
fff(x) = f(ff)(x) = x f f(a) = f(b)
a=fff(a) = fff(b) = b
f f f f ff
f x Rx f(x)
f(x)< x f(x)> x f(x) = x f(x)> x f
x=fff(x)> f(f(x)) > f(x)> x f(x)< x f(x) = x x
f(x) = x, x R
fC0(R)ff(x) = f(x),xR
Ef:= {xR:f(x) = x}f
f(R)xRf(x) = f(f(x)) f(x)Ef
Eff(R)Ef=f(R)f(x) = x
xf(R)ff=f f(R)
A f f(x) = x A A
A A = [1,1] f
f(x) = x x [1,1] f(x) = 2 x x [1,2] [2,+[f(R) = [1,1]
f(x) = x f(R)=[1,1]
m > n > 0 lim
x0
(cos x)1/m (cos x)1/n
x2.
(cos x)1/m (cos x)1/n
x2=(cosnx)1/nm (cosmx)1/nm
x2
amn bmn = (ab)(amn1+bamn2+··· +bmn1)a= (cosnx)1/nm, b =
(cosmx)1/nm
(cosnx)1/nm (cosmx)1/nm
x2=cosnxcosmx
x2(mn
p(cosnx)nm1+··· +mn
p(cosmx)nm1)
limx0mn
p(cosnx)nm1+··· +mn
p(cosmx)nm1=mn
lim
x0
(cos x)1/m (cos x)1/n
x2= lim
x0
cosnx(1 cosmnx)
mnx2
= lim
x0
(1 cosmnx)
mnx2
= lim
x0
(1 cos x)(1 + cos x+··· + cosmn1x)
mnx2
=mn
mn lim
x0
(1 cos x)
x2=mn
2mn .
f:RR0<a<1
lim
x0f(x) = 0 = lim
x0
f(x)f(ax)
x.
lim
x0
f(x)
x= 0.
limx0f(x)f(ax)
x= 0 ε > 0δ > 0x]δ, δ[
|f(x)f(ax)|< ε|x|nN
|f(x)f(anx)|≤|f(x)f(ax)|+|f(ax)f(a2x)|+··· +|f(an1x)f(anx)|
ε|x|(1 + a+a2+··· +an1) = ε|x|1an1
1a<ε|x|
1a.
x]δ, δ[ 0 < a < 1
akx]δ, δ[kNnlimx0f(x)=0
limn→∞ f(anx)=0
ε > 0,δ > 0 : x]δ, δ[ =⇒ |f(x)| ≤ ε|x|
1a
ε > 0,δ > 0 : x]δ, δ[ =
f(x)
x
ε
1a
lim
x0
f(x)
x= 0
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !