Calcul de développement par équation di érentielle

pN
f(x) =
+
X
n=0 n+p
pxn
f(x) (1 x)f0(x)
x7→ Z+
0
et2sin(tx) dt
f:x7→ px+1 + x2
f(x) = arcsin x
1x2
f
f(0) = 0
f
f:x7→ arccos x
1x2
x7→ sh (arcsin x)
f:x7→ ex2/2Zx
0
et2/2dt
f
f
f:x > 17→ Z+
1
et
x+tdt
f
f(x) = ch(x) cos(x)
f
y(4) + 4y= 0
k > 0
f(x) = Z1
0
tksin(xt) dt
fR
fR
xR, xf0(x)+(k+ 1)f(x) = sin x
xy0+ (k+ 1)y= sin x
(E): ty0+y= 3t2cos(t3/2)
v(E)
(E)R
+
v
n+p
p=n(n1) . . . (np+ 1)
p!1
p!np
f
]1 ; 1[ fC
f0(x) =
+
X
n=1 n+p
pnxn1
(1 x)f0(x) =
+
X
n=0
(n+ 1)n+p+ 1
pxn
+
X
n=0
nn+p
pxn=
+
X
n=0
αnxn
αn= (n+ 1)n+p+ 1
pnn+p
p
αn= (n+p+ 1)n+p
pnn+p
p= (p+ 1)n+p
p
(1 x)f0(x)=(p+ 1)f(x)
(1 x)y0= (p+ 1)y
]1 ; 1[
y(x) = C
(1 x)p+1
CR
f(0) = 1
f(x) = 1
(1 x)p+1
sin(tx) =
+
X
k=0
(1)k
(2k+ 1)!t2k+1x2k+1
Z+
0
t2k+1et2=k!
2
Z+
0
(1)k
(2k+ 1)!t2k+1x2k+1
dtk!
2(2k+ 1)! |x|2k+1
Z+
0
et2sin(tx) dt=
+
X
k=0
(1)kk!
2(2k+ 1)!x2k+1
xR
t7→ et2sin(tx)R+
d
dxet2sin(tx)
tet2
t7→ tet2R+
f:x7→ Z+
0
et2sin(tx) dt
C1
f0(x) = Z+
0
tet2cos(tx) dt
f0(x) = 1
21
2xf(x)
fR
2y0+xy = 1
f f(0) = 0
2y0+xy = 1 y(0) = 0
g:x7→
+
X
k=0
(1)kk!
2(2k+ 1)!x2k+1
R= +
f g R
2y0+xy = 1 y(0) = 0
f
g
f(x) =
+
X
k=0
(1)kk!
2(2k+ 1)!x2k+1
xR
fC
f0(x) = 1
21 + x2f(x)
f00(x) = x
2(1 + x2)3/2f(x) + 1
21 + x2f0(x)
f
(1 + x2)y00(x) + xy0(x)1
4y(x) = 0
y(0) = 1 y0(0) = 1/2
PanxnR > 0S
x]R;R[
S(x) =
+
X
n=0
anxn, S0(x) =
+
X
n=1
nanxn1
S00(x) =
+
X
n=2
n(n1)anxn2=
+
X
n=0
(n+ 2)(n+ 1)an+2xn
(1 + x2)S00(x) + xS0(x)S(x)/4=0
+
X
n=0 (n+ 2)(n+ 1)an+2 + (n21/4)anxn= 0
nN, an+2 =1
4
(2n+ 1)(2n1)
(n+ 2)(n+ 1) an
S(0) = 1 S0(0) = 1/2
a2p=(1)p
24p1
(4p2)!
((2p)!)((2p1)!) a2p+1 =(1)p
24p
(4p1)!
(2p+ 1)!(2p1)!
Pa2px2pPa2p+1x2p+1
an+2
an
=(2n+ 1)(2n1)
4(n+ 2)(n+ 1) 1
R1
(1 + x2)y00(x) + xy0(x)1
4y(x)=0
y(0) = 1 y0(0) = 1/2
f
f
f]1 ; 1[
(1 x2)f0(x)xf(x)=1 f(0) = 0
x7→ 1
1x2]1 ; 1[
x7→ arcsin x
]1 ; 1[ f
f f
f(x) =
+
X
n=0
anx2n+1
f0(x) = P+
n=0 (2n+ 1)anx2n
(1x2)f0(x)xf(x) =
+
X
n=0
(2n+ 1)anx2n
+
X
n=0
(2n+ 1)anx2n+2
+
X
n=0
anx2n+2
(1 x2)f0(x)xf(x) = a0+
+
X
n=0
((2n+ 3)an+1 (2n+ 2)an)x2n+2 = 1
a0= 1 nN, an+1 =2n+ 2
2n+ 3an
an=22n(n!)2
(2n+ 1)!
x6= 0
an+1x2n+3
anx2n+1
=4(n+ 1)2x2
(2n+ 3)(2n+ 2) x2
R= 1
f
R1
f(x) =
+
X
n=0
anxn]1 ; 1[
f f
(x21)y0+xy 1=0
(x21)f0(x) + xf(x)1 = (a1+ 1) +
+
X
n=1
(nan1(n+ 1)an+1)xn
a1=1n1, an+1 =n
n+ 1an1
a0=f(0) = π/2
a2p=(2p1)
2p× ··· × 1
2a0=(2p)!
(2pp!)2
π
2a2p+1 =2p
2p+ 1 ··· 2
3a1=(2pp!)2
(2p+ 1)!
f:x7→ sh (arcsin x)
f
(1 x2)y00 xy0y= 0
y(0) = 0 y0(0) = 1
PanxnR > 0S
S]R;R[
a0= 0, a1= 1 nN, an+2 =n2+ 1
(n+ 2)(n+ 1)an
a2p= 0 a2p+1 =Qp
k=1 (2p1)2+ 1
(2p+ 1)!
Panxn
x6= 0 up=a2p+1x2p+1
up+1
up
→ |x|2
S
(1 x2)y00 xy0y= 0
y(0) = 0 y0(0) = 1
f
]1 ; 1[
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !