Lycée Newton - PTSI T3 - Deuxième principe de la thermodynamique
Thermodynamique
Chapitre 3 : Deuxième principe de la
thermodynamique
Sommaire
Page
1 Le deuxième principe de la thermodynamique 1
1.1 Insuffisance du premier principe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Dénitiondunthermostat..................................... 2
1.3 Enoncédudeuxièmeprincipe ................................... 3
1.4 Cas particulier d’un système isolé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Bilans d’entropie 4
2.1 Utilisation du deuxième principe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Variation d’entropie d’un système . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Variation d’entropie du gaz parfait . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Variation d’entropie d’une phase condensée . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Exemples .............................................. 6
2.3.1 Détente de Joule et Gay-Lussac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Contact thermique avec un thermostat . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 Contact thermique avec deux thermostats . . . . . . . . . . . . . . . . . . . . . . . . 7
Ce chapitre aborde un aspect fondamental de la thermodynamique. Il apparaît clairement que le premier
principe est insuffisant pour rendre compte du sens d’évolution d’un système thermodynamique. Le deuxième
principe de la thermodynamique fournit ce critère d’évolution, en introduisant le concept d’entropie.
Le principal objectif de ce chapitre sera d’appliquer ce nouveau principe afin de déterminer si une
transformation envisagée est réalisable ou non. On s’attachera particulièrement à déterminer si une trans-
formation est ou non réversible en effectuant des bilans d’entropie. Grâce à l’étude de quelques exemples,
il s’agira aussi de préciser l’origine physique de l’irréversibilité des transformations réelles.
Historiquement, le deuxième principe a été introduit pour prendre en compte la dissymétrie entre l’éner-
gie thermique et l’énergie mécanique, point qui sera développé dans le chapitre traitant des machines ther-
miques.
1 Le deuxième principe de la thermodynamique
1.1 Insuffisance du premier principe
Certaines transformations sont compatibles avec le premier principe sans pour autant être réalisables.
C’est le cas par exemple de la transformation inverse de la détente d’un gaz étudié dans le chapitre pré-
cédent : on sait que le gaz ne va pas spontanément retourner dans la première enceinte, laissant vide la
2013/2014 1/7
Lycée Newton - PTSI T3 - Deuxième principe de la thermodynamique
deuxième enceinte. Pourtant cette transformation hypothétique ne contredit en rien le premier principe.
Un autre exemple est celui de la mise en contact de deux solides de température différente. L’expérience
montre que les échanges thermiques vont se faire du solide le plus chaud vers le solide le plus froid. L’inverse
est expérimentalement impossible, mais le premier principe ne l’interdit pas.
L’exemple d’introduction du chapitre précédent en est une autre illustration. Un oscillateur enfermé
avec de l’air dans une enceinte indéformable et calorifugée se stabilise suqu aux frottements exercés par
l’air, et l’on observe une augmentation de température de l’air. L’expérience montre que la transformation
inverse, au cours de laquelle l’air se refroidit spontanément et met en mouvement l’oscillateur, est impos-
sible. Pourtant le premier principe ne l’interdit pas.
A ce stade du cours, la thermodynamique semble donc incomplète. Il faut lui ajouter un nouveau prin-
cipe, un critère d’évolution du système, précisant dans quel sens celui-ci peut évoluer. Certaines transforma-
tions (idéales, jamais vraiment réalisables) peuvent se faire dans les deux sens (transformation réversibles) ;
d’autres dans un seul (transformation irréversible). Le deuxième principe, et son concept clef d’entropie,
va nous permettre de déterminer théoriquement si une évolution est réversible ou irréversible.
1.2 Définition d’un thermostat
On sera souvent amené à considérer des situations où le système est en contact avec un autre système
fermé n’échangeant aucun travail et capable d’échanger de la chaleur sans que sa température varie. Ce
type de système s’appelle un thermostat. On parle aussi de source idéale de chaleur.
Cette définition suppose implicitement que la température du thermostat est uniforme. Concrètement,
l’air de la pièce, ou un bain d’eau maintenu à température constante (TP chimie) peuvent généralement
être considérés comme des thermostats. Un système réel peut être considéré comme un thermostat si sa
capacité thermique est très grande. Celle-ci étant extensive, ce sont généralement des systèmes renfermant
une grande quantité de matière.
Remarque : On notera que même si la température d’un thermostat est constante, il sera possible de
faire varier la température imposée au système en changeant de thermostat au cours d’une transformation.
2013/2014 2/7
Lycée Newton - PTSI T3 - Deuxième principe de la thermodynamique
1.3 Enoncé du deuxième principe
Deuxième principe de la thermodynamique
A tout système thermodynamique est associée une fonction d’état extensive, notée Set
appelée entropie.
Pour tout système fermé, en contact avec un thermostat de température T0, la variation
d’entropie du système est donnée par le bilan :
S=Se+Sc(1)
avec Sel’entropie échangée avec le thermostat :
Se=Q
T0
(2)
(Qest le transfert thermique reçu par le système) et Scl’entropie créé. Ce terme est
nécessairement positif ou nul :
Sc0(3)
Dans le cas d’une transformation réversible : Sc= 0.
Dans le cas d’une transformation irréversible : Sc>0.
Remarques :
L’inégalité Sc0fournit le critère d’évolution du deuxième principe. En effet, une transformation
envisagée pour laquelle l’entropie créée serait négative est irréalisable.
Sest une fonction d’état. Ses variations sont notées Scar elle est indépendante du chemin suivi
(i.e. de la transformation subie)
A l’inverse Seet Scne sont pas des fonctions d’état : l’entropie échangée Seet l’entropie crée Sc
dépendent du chemin suivi.
Pour une transformation élémentaire, les équations de l’énoncé du deuxième principe s’écrivent :
dS=δSe+δSc(4)
δSe=δQ
T0
(5)
δSc0(6)
On peut vérifier que les notations se justifient à partir des remarques précédentes. Dans le cadre
du programme de CPGE, on ne fera appel qu’à des transformations finies. Cette formulation du
deuxième principe ne sera donc utilisée dans la suqu de ce cours.
Si le système est en contact avec Nthermostats de température Ti:
Se=X
i
Qi
Ti
(7)
avec Qile transfert thermique reçu par le système de la part du thermostat (i)à la température Ti.
2013/2014 3/7
Lycée Newton - PTSI T3 - Deuxième principe de la thermodynamique
Alors que le travail et le transfert thermique joue un rôle équivalent dans le premier principe, l’expres-
sion de l’entropie échangée fait apparaître la dissymétrie entre ces deux grandeurs : seul le transfert
thermique intervient.
L’entropie s’exprime en J·K1.
Au lieu d’écrire une égalité et de parler d’entropie créée, on aurait pu écrire simplement SSe.
L’intérêt de cette écriture est qu’elle fait apparaître clairement une inégalité, signifiant que l’entropie
est une grandeur non conservative.
Autrement dit, la présence de Sc0dans le bilan d’entropie signifie que l’entropie n’est pas une
grandeur physique conservative. Contrairement à l’énergie, qui ne peut être créée, mais uniquement
échangée.
1.4 Cas particulier d’un système isolé
Dans le cas d’un système isolé, l’entropie du système ne peut qu’augmenter :
S0(8)
Ainsi, un système isolé abandonné à lui-même va spontanément évoluer de manière à augmenter son entro-
pie. Lorsqu’il atteint l’équilibre thermodynamique, son entropie n’augmente plus et a donc atteint sa valeur
maximale. Dans ce cas, l’augmentation de l’entropie est une indication de la flèche du temps. L’entropie
d’un système isolé croît lorsque le temps s’écoule.
2 Bilans d’entropie
2.1 Utilisation du deuxième principe
Faire un bilan d’entropie, c’est expliciter les termes S, variation de l’entropie du système étudié, et
Se, entropie reçue par le système. On n’a pas accès directement à Sc: cette grandeur se calcule à partir de
l’application du deuxième principe :
Sc= ∆SSe(9)
On pourra alors discuter le caractère réversible (Sc= 0), irréversible (Sc>0) ou impossible (Sc<0) d’une
transformation.
2.2 Variation d’entropie d’un système
La variation d’entropie Sd’un système se calcule à partir de l’expression de son entropie, qui sera
donnée : l’établissement de l’entropie d’un système n’est pas au programme.
2.2.1 Variation d’entropie du gaz parfait
Les variables d’état du gaz parfait dont sa pression p, son volume Vet sa température T/ L’état de n
moles de ce gaz à l’équilibre est entièrement déterminé par la donnée de deu de ces variables : (p, V ),(p, T )
ou (T, V ) ; la troisième de ces variables se déduit de l’équation d’état pV =nRT .
L’entropie, fonction d’état, ne dépend que de l’état macroscopique du gaz ; elle est donc entièrement
déterminée par la donnée de deux des variables d’état p,Vet T. On peut donc l’écrire comme une fonction
de deux variables S(p, V ), S(p, T )ou S(T, V ). L’expression de l’entropie Sen variables (T, V )est admise :
2013/2014 4/7
Lycée Newton - PTSI T3 - Deuxième principe de la thermodynamique
Entropie d’un gaz parfait L’entropie de nmoles de gaz parfait à l’équilibre est donnée par :
S(T, V ) = CVln ÅT
T0ã+nR ln ÅV
V0ã+S0(10)
S0=S(T0, V0)est l’entropie du gaz dans l’état (p0, V0, T0) choisi comme origine.
Remarques :
Le gaz doit être dans un état d’équilibre thermodynamique afin que sa température et sa pression
soient uniformes. C’est à cette condition que l’on peut parler de la température Tou de la pression
pdu gaz, et que les écritures S(T, V ),S(T, p)et S(p, V )ont un sens.
L’entropie est en fait définie à partir de sa variation. Son expression est donc déterminée à une
constante additive près, que l’on note S0, correspondant à un état arbitrairement choisi. Cela n’est
pas génant car seules les variations d’entropie Sinterviennent dans les bilans d’entropie.
A partir de l’équation d’état des gaz parfaits, il est possible à partir de (10) de d’exprimer l’entropie en
fonction des variables (T, p)et (p, V ):
.
Dans les bilans d’entropie, seules es variations d’entropie entre un état initial et un état final nous seront
utiles :
.
Ces expressions ne sont pas à mémoriser. Il faut savoir exprimer l’entropie en fonction de deux des
variables d’état du gaz parfait à partir d’une expression donnée, et en déduire la variation d’entropie au
cours d’une transformation. Le choix des variables utilisées dépendra des paramètres connus dans les état
initial et final.
Lois de Laplace
Considérons un gaz parfait subissant une évolution adiabatique et réversible. Montrons que cette trans-
formation est nécessairement isentropique :
.
A partir de la variation d’entropie S(p, V ), il est possible de retrouver la loi de Laplace en variables
(p, V ):
2013/2014 5/7
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !