PEIP Polytech Paris-Sud
2013-2014
Interrogation écrite de Mécanique n°1
Mardi 11 Février 2014. Durée 1h30
Les documents et calculatrices sont interdits.
Les exercices sont indépendants.
N’oubliez pas de décrire vos calculs avec des phrases et de mettre en valeur les résultats.
I. Questions de cours
1- Enoncer les 3 lois de Newton.
2- Donner la position, la vitesse et l’accélération dun point M dans un repère en cordonnées
polaires, en fonction de
ρ
u
,
u
,
,
et les dérivées de
et
.
3- Ecrire l’accélération du point M en cordonnées intrinsèques, en fonction de v, dv/dt, R,
t
u
et
n
u
.
On précisera la signification de R.
II. Cinématique : Coordonnées intrinsèques
Un étudiant, en train de fuir le contrôle de mécanique, aperçoit le surveillant au loin. Pour tenter
de s’échapper de la salle le plus discrètement possible sans se faire voir, il suit la trajectoire suivante en
coordonnées cartésiennes :
t
bx
;
2
2
1
t
by
, avec b et
des constantes positives.
1- Calculer les vecteurs vitesse et accélération (en coordonnées cartésiennes). Puis, calculer la
norme du vecteur vitesse.
2- Déterminer les coordonnées du vecteur tangentiel
t
u
en fonction de
x
u
,
y
u
et des données du
problème à l’instant t=
.
3- Déterminer les coordonnées, à l’instant t=

du vecteur normal
n
u
en fonction de
x
u
,
y
u
et des
données du problème. Pour cela, vous pourrez utiliser une des deux méthodes (au choix) :
a. Calculer un produit vectoriel sachant que
tzn uuu
.
b. Faire soigneusement un dessin avec
x
u
,
y
u
et
t
u
à linstant t= pour en déduire
n
u
à
linstant t=.
4- Calculer la composante tangentielle de l’accélération à l’instant t=, soit en projetant
l’accélération sur la direction tangentielle, soit en utilisant la définition de l’accélération
tangentielle.
5- En projetant l’accélération sur la direction normale, calculer la composante normale de
l’accélération à l’instant t=
.
6- Calculer le rayon de courbure, R, de la trajectoire à l’instant t=
.
III. Dynamique et Energie : Dôme
Un plombier zingueur est en train de faire l’entretien et le polissage du dôme de l’institut de
France (forme de demi-sphère de rayon R). A t=0, il laisse son marteau de masse m dans une position
décrite en coordonnées polaires par
=
0 par rapport à l’axe vertical. Bien évidemment, il ne s’aperçoit
pas que le marteau commence à glisser. On va étudier le mouvement du marteau à fur et mesure quil
glisse sur la surface du dôme. On négligera les frottements du marteau sur le dôme.
Dynamique
1- Représenter sur un schéma toutes les forces qui agissent sur le marteau lorsquil se trouve à un
angle
. Ensuite, écrire leurs composantes en coordonnées polaires en fonction de m, g, N et
avec g, l’accélération de pesanteur et N, la norme de la réaction du dôme sur le marteau.
2- Donner l’expression en coordonnées polaires de l’accélération du marteau en fonction de R,
, et
de ces dérivées par rapport au temps.
3- Ecrire le principe fondamental de la dynamique selon la direction
u
.
a. Montrer que dans l’approximation de petits angles (sin

~

) le mouvement du marteau
peut être décrit par l’équation    . Donner la valeur de

, en quelles unités
sexprime et vérifier lhomogénéité de lexpression trouvée.
b. Montrer que
(t)=A +B  est solution de l’équation précédente et donner les
valeurs de A et B. Pour cela on prendra en compte la position et la vitesse du marteau à t=0.
c. Ecrire le principe fondamental de la dynamique selon la direction
ρ
u
. Ecrire la condition
pour que le marteau se détache de la surface du dôme.
Energie
On va continuer l’exercice avec une analyse énergétique pour calculer l’angle de décollage du
marteau (l’angle quand le marteau se détache de la surface du dôme). Cette partie de l’exercice est
indépendante de la partie précédente.
4- Ecrire l’énergie cinétique du marteau quand il est en train de glisser sur la surface du dôme, en
fonction de m, R et .
5- Ecrire l’énergie potentielle du marteau quand il est en train de glisser sur la surface du dôme, en
fonction de m, g, R et
. On prendra lorigine de lénergie potentielle en x=0 (=/2).
6- En déduire l’énergie totale du marteau. Est-elle conservée ? Justifier la réponse. Que vaut
l’énergie totale du marteau à t=0 ?
7- Montrer alors que : R2=2g[cos(
0)-cos(
)]
8- En sachant que le marteau décolle lorsque la condition g cos(
)= R est satisfaite, déterminer
l’angle de décollage en fonction de
0.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !