Le Randonneur - Janvier 2014 - Texte hors revue - page 1
La mécanique du cycliste 1 :
« Le cycliste et son équation »
Nous abordons ici la mécanique du cycliste vue par un
physicien. C’est Gilbert Vincent, professeur de physique
à l’université de Grenoble, qui s’en charge, s’appuyant
sur son savoir d’universitaire et son expérience de ran-
donneur.
Quatre chapitres traitent du sujet. Des redondances en
permettront une lecture (quasi) indépendante :
1) Le cycliste et son équation. Ce chapitre est exclusive-
ment présenté sur le site internet du « Randonneur » dès
la n de l’année 2013.
2) Le cycliste par monts et par vaux dans le numéro 54
de janvier 2014.
3) Le cycliste dans le vent dans le numéro 55 de mai
2014.
4) Le cycliste freine dans le numéro 56 de septembre
2014.
Quatre chapitres précis, illustrés, sans démagogie.
Certes, la lecture en est plus proche d’une rude montée
que d’une descente sensuelle. Il est évident que cette
approche très fouillée n’intéressera pas tous les lecteurs
du « Randonneur » mais en passionnera une minorité.
Personnellement j’y trouve un complément indispen-
sable à mon travail de physiologiste. Et notre revue n’a
pas de complexe et peut bien livrer un travail de réfé-
rence !
François PIEDNOIR
Rédacteur en chef du « Randonneur »
Dans la suite, quand nous parlerons de la masse ou du poids, ce
seront ceux de l’ensemble randonneur-vélo.
Toutes les relations et grandeurs sont données dans le
système international : mètre, kilogramme et seconde pour
la mécanique. Cest parfois un peu pénible car nos compteurs
sont en km/h et non en m/s, mais les relations sont plus uides,
et surtout cela évite de (très) grosses erreurs.
Rappel de la conversion: 1 m/s 3,6 km/h. Donc il faut
diviser la vitesse lue sur les compteurs par 3,6 pour obtenir
des m/s.
Quelques correspondances utiles:
m/s 2 3 5 7 10 15 20
km/h ~ 7 ~ 11 18 ~ 25 36 54 72
NB: les forces et le newton ne sont pas abscons. Ce sont au
contraire des notions très « sensitives ». Si nous prenons un
citron dans notre main,elle sera soumise à une force denviron
1 newton, et si nous saisissons une bouteille, pleine bien sûr
sinon c’est sans intérêt, ce sera une bonne douzaine de newtons.
B / Les forces en présence
A priori on sent bien que trois forces sont à prendre en
considération:
- le poids du randonneur et de son vélo dans les montées ou
descentes ;
- le frottement de l’air sur l’ensemble de l’équipage ;
- le frottement des deux roues à la fois par leur frottement
sur la route, et dans une moindre mesure par le frottement de
leurs roulements (la transmission viendra plus loin).
Les deux premières sont très directement ressenties, et pour la
dernière, attendre une crevaison.
La gure 1, page suivante, donne en avant-première un résumé
succinct du texte qui suit.
1/ le poids dans les pentes
Une force qui a le bon goût de nous aider une fois sur deux!
Pas besoin de faire un dessin. Notre poids, il faut le monter, et
il nous redescend. La force qui nous concerne est la projection
du poids mg sur la pente; elle s’exprime de manière très simple:
Fp = mgp
p est la pente, dénie ici par p = dénivelée /distance parcourue,
par convention positive si le randonneur monte, et négative
dans une descente.
Sur le plat, p = 0.
Pour une pente de 0,02 (2 %) en montée, un randonneur de 80
kg avec son vélo devra vaincre:
Fp = 80 x 10 x 0,02 = 16 newtons (rappel g ~ 10)
Par contre s’il redescend cette pente à 2 %, cette force de 16
newtons va gentiment l’aider.
Dans ce 1er chapitre nous allons eectuer une synthèse des
aspects purement mécaniques du couple randonneur-vélo ;
plus exactement nous allons établir les liens entre la vitesse, les
forces, et la puissance.
Nous rencontrerons quelques formules; pour les allergiques,
elles peuvent être éventuellement « zappées » dans la mesure
où leurs signications sont explicitées dans le texte, et leurs
eets concrets résumés par des graphiques.
A / Où il est question de masse,
de poids, de forces et d’unités
En préambule, nous allons tout de suite préciser une notion
faussement familière : le poids. En fait ce qui nous est
intrinsèque, cest non pas notre poids mais notre masse
(exemple m = 70 kg), qui est la même sur Terre ou sur la Lune,
ou n’importe où d’ailleurs. Le poids cest la force d’attraction
par une autre masse qui s’exprime en newton. Il dépend de
l’endroit où on se trouve.
Concrètement, nos randonnées se déroulant pour l’instant
sur Terre, il faut multiplier notre masse m par le champ de
pesanteur g (= 9,81 ms-2) pour obtenir le poids. Donc le poids
(en newton, symbole ociel N) est égal à mg soit sensiblement
10 fois notre masse exprimée en kg.
Le Randonneur - Janvier 2014 - Texte hors revue - page 2
2/ le frottement des roues sur le sol,
avec un zeste de frottement des roulements des roues.
Il est lié au poids (mg) et à un coecient de frottement f qui
prend l’ensemble en compte. Cette force de frottement s’oppose
toujours au mouvement et s’exprime par:
Fs = mgf relation très semblable à celle du poids dans les pentes.
Le coecient f va de 0,002 (0,2 %) pour les pneus performants
bien gonés sur très bon asphalte, à 0,01 (1 %) pour des pneus
VTT sans crampons démesurés. Il peut être beaucoup plus
élevé sur des chemins et sentiers.
Notons que la force Fs ne dépend pas du fait que l’on monte
ou descende, et nest pas non plus fonction de la vitesse. Par
exemple avec une masse totale de 80 kg, et un coecient de
0,01, la force de frottement vaut:
Fs = 80 x 10 x 0,01 = 8 newtons
3/ le frottement de l’air
C’est lennemi numéro unpour qui veut rouler vite! Il croit très
rapidement avec la vitesse: un vrai régulateur de vitesse!
Ici, ce frottement s’opposera toujours au mouvement car nous
considérerons des randonnées sans vent. Le chapitre 3 « Le
cycliste dans le vent » précisera l’eet du vent.
Cette force, appelée trainée, nest pas directement liée au poids,
mais à plusieurs facteurs:
- la surface S du cyclo qui balaie l’air (il n’y a plus qu’à prendre
une photo de face et à mesurer la surface apparente) ;
- un coecient de pénétration dans l’air, le fameux Cx,
quelquefois noté à tort Cd ;
- la masse volumique ρ (rho) de l’air ;
- et bien sûr la vitesse du cycliste, qui intervient en V 2 (V au
carré soit V.V).
Elle se traduit par la relation:
Fa = ½ ρ S Cx .V 2
Pour un gabarit moyen, la tête dans le guidon, le coecient SCx
est voisin de à 0,30 m2, et il tourne autour de 0,40 en position
relevée. Un vélo couché fait gagner au moins 30%. À basse
altitude, ρ = 1,2 kg/m3.
Un exemple avec un coecient ½ ρ S Cx = 0,25 et une vitesse
de 7 m/s (~ 25 km/h):
Fa = 0,25 x 7 x 7 = 12 newtons
NB: la masse volumique ρ de l’air diminue avec l’altitude (cf
annexe 1). Elle nest plus que de 1,0 kg/m3 au sommet des
cols à 2000 m d’altitude où le randonneur verra la force de
frottement de l’air diminuer d’un petit 20 % par rapport à la
plaine.
D’autres eets seront présentés au chapitre 2.
C / La force résultante et la force motrice
Tout ce petit monde se regroupe pour donnernalement la
force résultante F :
F = m g p + mg f + ½ ρ S Cx V 2 ou
F = m g ( p + f ) + ½ ρ S Cx V 2
Si nous reprenons les forces que nous avons successivement
évoquées:
F = 16 + 8 + 12 = 36 newtons.
Une remarque pratique importante: la pente p et le coecient
de frottement sur le sol f jouent des rôles tout à fait similaires ;
un coecient de frottement de 1 %, est strictement équivalent
à une pente positive (donc une montée) de 1 %; tout se passe
comme si toutes les pentes gravies étaient augmentées de 1%.
De la même manière, ce frottement « réduit » la pente des
descentes: une descente à 4 % ne sera qu’une « descente » à
3%. Une descente à 1 % « annule » un frottement sur le sol de
1 %: il n’y a plus alors que le frottement de l’air:
en eet, si p + f = 0, alors F = ½ ρ S Cx.V 2.
Et maintenant que fait-onde cette force?
Un illustre savant, Newton (tiens, déjà entendu ce nom!), nous
a enseigné que si un corps se déplace à vitesse constante, cas qui
nous intéresse ici, la somme des forces qui agissent sur lui est
nulle. Cest donc qu’il existe une autre force, exactement égale
à F, mais de signe opposé.
En montée ou sur le plat, on peut imaginer cette force comme
une celle qui tire le vélo, attachée à une moto compatissante,
ou qui passerait sur une poulie avec un seau plein deau accroché
au bout, solutions qui ne sont pas toujours « sportivement
correctes » ou faciles à mettre en œuvre!
C’est bien le randonneur qui va assumer cette force par
l’intermédiaire du pédalage; ce dernier se traduit au contact de
la roue arrière avec le sol par une force égale à F mais dirigée
(en général) vers l’avant, force dite motrice.
Figure 1 : Forces en présence et puissance du cycliste.
Frottement air : F
a
= ½ ρSC
x
V
2
Projection du poids mg : F
p
= mgp
Pente p
« Je dois exercer une force
F = F
a
+ F
p
+ F
s
pour équilibrer
et avancer à vitesse constante.
La puissance demandée est F.V.
Ma puissance disponible est P,
donc si R
e
est le rendement
de la transmission
P.R
e
= (F
a
+ F
p
+ F
s
) V »
Transmission pédales pignons : Rendement R
e
Transmission pédales pignons : Rendement R
e
Frottements sol, roulements
F
s
= mgf
Le Randonneur - Janvier 2014 - Texte hors revue - page 3
Cette force va nous conduire directement à l’énergie dépensée
par le randonneur, appelée aussi travail, et à la puissance
mécanique qu’il développe.
Avant de continuer, plusieurs remarquespour les spécialistes;
pour être tout à fait exact, si α est l’angle entre la route et
l’horizontale:
1/ la dénition que nous avons prise pour p (=dénivelée / distance
parcourue) est le sin α, et cest très exactement la grandeur qui
convient pour l’équation du cycliste.
Attention en math, la dénition de la pente est: dénivelée /
distance horizontale, soit en fait tg α.
2/ rigoureusement, f devrait être remplacé par f cos α mais
comme α est petit, le cosinus est très proche de 1 (0,995 pour
une pente à 10 %), et quasiment tout le monde travaille avec f
et non f cos α.
3/ sous sa forme exacte :
F = m g sin α + m g f cos α + ½ ρ S Cx V 2
cette équation s’applique à beaucoup de cas : motos,
automobiles, parachutistes (α = - π/2); dans l’analyse des forces
pour l’équation dynamique du décollage des fusées (α = + π/2),
et des avions (α = 0), il surait de remplacer la force F générée
par le cycliste, par la poussée des réacteurs (en newtons et pas
en tonnes!).
D / Travail fourni: les joules
oula bonne excuse pour s’arrêter au restaurant au sommet du
col.
La mécanique nous enseigne que le travail En fourni par
une force constante est égale au produit de cette force par la
distance parcourue D.
En = F . D
Ce travail s’exprime en joules (J), cest une énergie. La notation
très généralement utilisée pour le travail est W (de l’anglais
work). Pour éviter une confusion avec les futurs watts, nous
prendrons ici la notation En, pour Énergie.
Avec la force de 36 newtons calculée précédemment, si le
randonneur parcourt 10 km, le travail sera égal à:
En = 36 x 10 000 = 360 000 joules.
Le chire est élevé, car le joule est petit à notre échelle, on parle
plutôt en kJ (1 000 joules): ici 360 kJ.
Direction le restaurant pour compenser cette areuse dépense,
et prévoir un menu qui, bien sûr, prendra aussi en compte notre
consommation quotidienne hors randonnée.
Un peu de physiologie en passant. Le corps humain ayant un
rendement mécanique guère supérieur à 20 %, ce nest pas 360
kJ qu’il faudra absorber pour éponger la randonnée, mais 5 fois
plus!
Il existe une autre unité de travail, hors système, mais très
connue, cest la calorie. Elle vaut 4,18 joules. Bien qu’à bannir,
elle est commode ici, car il faut consommer un peu plus d’une
calorie pour un joule mécanique dépensé.
La note du restaurant est réglée ? On peut continuer pour
introduire la notion la plus intéressante, la puissance
développée?
E / Puissance développée: les watts
et l’équation du cycliste
La puissance, c’est le travail fourni En, divisé par le temps
correspondant t:
P = En / t
Elle s’exprime en watts (W), les mêmes que ceux d’une
ampoule déclairage ou d’un moteur quelconque.
Dans notre exemple, si le randonneur se déplace à 25 km/h, il
va parcourir les 10 km en 24 minutes:
P = 360 000 / (24 x 60) = 250 watts, puissance qui nest à la
portée que des bons amateursentrainés !
En reprenant l’expression du travail En = F . D, il vient:
P = F . D / t ,D / t, distance divisée par le temps, est
simplement la vitesse du randonneur, donc:
P = F . V
La puissance (en watt) est simplement égale à la force (en
newton) multipliée par la vitesse (en m/s).
Reprenons notre exemple (V = 25 km/h soit ~ 7 m/s) :
P = 36 x 7 = 252 watts: aux arrondis près, ça marche.
Avant d’arriver à l’équation du cycliste, encore une petite
notion, celle du rendement de la transmission. La puissance
développée par le cycliste est transmise à la roue arrière par
des intermédiaires qui se servent au passage: les pédales et
le pédalier montés sur roulements, la chaine qui frotte sur les
plateaux comme sur les pignons et les galets du dérailleur, qui
eux frottent aussi sur leur axe.
Donc ce nest pas la puissance P du cycliste qui sert à avancer,
mais P Re Re est le rendement.
Malgré tous ces intermédiaires, le rendement Re est très bon,
voisin de 0,98 (98 %). Ceci signie que seulement 2% de la
puissance est dissipée par la transmission.
Ouf, voici enn l’équation du cycliste, d’abord sous sa forme
développée:
P Re = m g p V + m g f V + ½ ρ S Cx V 3
Équation qui signie que la puissance P développée par le
cycliste, multipliée par le rendement Re de la transmission, est
égale à la puissance liée à la pente (m g p V), plus celle dissipée
par les frottements sur le sol (m g f V) et dans l’air (½ ρ S Cx V 3).
Areux pour le cycliste, et tous les véhicules, ce V 3 (1)!
Sous sa forme compacte, la plus classique, elle s’écrit :
P Re = {m g (p + ƒ) + ½ ρ S CxV2} V
Sortons nos calculettes, ou mieux les ordinateurs et leurs
math-qq chose ou leurs tableurs. Pour peu que l’on connaisse
les coecients, il sera facile de calculer la puissance. Par contre
se donner la puissance et chercher la vitesse est une autre paire
de manches. L’auteur pourra vous aider si besoin.
Remarque:
Léquation a été présentée en termes de puissances. On pourrait
tout à fait l’écrire en revenant aux forces :
P Re / V = m g (p + f) + ½ ρ S Cx V 2
Ce qui revient à dire que le cycliste exerce une force propulsive
P Re / V qu’il peut augmenter à loisir en diminuant sa vitesse,
à condition bien sûr d’avoir les développements nécessaires, et
de tenir en équilibre sur le vélo!
Le Randonneur - Janvier 2014 - Texte hors revue - page 4
-600
-400
-200
0
200
400
010 20 30 40 50 60 70 80
F / Illustrations graphiques
Un petit dessin valant mieux qu’un grand discours, le plus
simple est de représenter l’allure de cette équation.
La gure 2 représente la puissance du cycliste en fonction de
sa vitesse, sur le plat (courbe du centre), dans une montée à 10
% (courbe du haut) et dans une descente à 10 % (courbe en
creux, en bas). Les valeurs des coecients utilisés pour notre
randonneur « lambda » sont indiquées sur la gure.
À vitesse nulle, la puissance est nulle (P = 0) dans tous les cas.
Normal !
Sur le plat, la puissance demandée augmente progressivement
avec la vitesse, et un randonneur qui fournirait 160 watts (cf.
le trait jaune horizontal sur le graphique) roulerait à 30 km/h.
Dans la montée à 10 %, la puissance évolue quasiment selon
Vitesse du cycliste (en km/h)
Figure 3 : Vitesse en fonction
de la pente pour diérentes
puissances (sans vent).
descente pente (%) montée
Watts à partir du haut :
500
400
300
250
200
150
100
50
0
une droite car le frottement de l’air est négligeable: il faut
sensiblement 2 fois plus de puissance pour aller 2 fois plus vite.
Pour la même puissance de 160 watts, gurée sur le graphique,
la vitesse tourne alors autour de 7 km/h, ce qui semble quelque
peu escargot, mais c’est bien la vitesse que notre moteur nous
autorise, sauf surchaue!
La descente est plus mouvementée! Une puissance nulle se
retrouve aussi pour une vitesse de 66 km/h:sans pédaler, le
randonneur laisse se débrouiller les 3 forces en présence, dont
la somme est nulle (F = 0). Par contre s’il estime qu’il va trop
vite et qu’il serait préférable de rouler prudemment à 40 km/h,
il devra fournir une puissance négative (!) de 500 watts, et
cette valeur peut, avec des pentes supérieures et l’eet du vent
dépasser très largement le kW (cf. chapitre 4).
m = 80 kg,
Re = 98 %,
f = 0,5 %,
ρ S Cx / 2 = 0,22 kg/m
Puissance cycliste-vélo (watt)
Vitesse du cycliste (km/h)
Puissance P / Vitesse en montée, sur le plat et en descente
m = 80 kg, Re = 0,98, ƒ = 0,5 %, ρSCx/2 = 0,22, vent nul
Pentes : montée 10 %, plat, descente 10 %
Figure 2 : Relation puissance - vitesse.
0
10
20
30
40
50
60
70
-10 -8 -6 -4 -2 0 2 4 6 8 10
P Re = {m g (p + ƒ) + ½ ρSCxV 2} V
Le Randonneur - Janvier 2014 - Texte hors revue - page 5
En fait si la puissance est négative, c’est que le cycliste freine, pour
créer une force dirigée cette fois vers l’arrière, et cette puissance
de 500 watts sera dissipée par les freins, essentiellement par les
jantes ou disques: doù la puissance notée « Puissance cycliste-
vélo ». Pour les matheux, la force F calculée précédemment est
négative.
Au contraire, si notre randonneur décide de pédaler, sa vitesse
va dépasser 66 km/h, mais très péniblement. Avec 160 watts,
quasi impossibles à fournir à cette vitesse, il ne gagnera que
3 km/h. Il rentre dans un mur d’air très dicile à pénétrer,
d’autant plus dicile d’ailleurs que sa vitesse est élevée.
Un autre graphique (gure 3) est très instructif: il représente
la vitesse en fonction de la pente pour diérentes puissances du
randonneur, de zéro à 300 watts par pas de 50 watts, puis deux
courbes pour les « pros »: 400 watts et 500 watts (2).
Chacun pourra, en connaissant sa vitesse V dans une pente p:
-déterminer la courbe qui lui correspond, et extrapoler à
toutes les autres pentes, ou au plat ;
-évaluer sa puissance, moyennant quelques aménagements
évoqués ci-après.
G / Quelques « questions fréquemment
posées »
Questions à poser d’ailleurs car importantes!
1/ Vaut-il mieux calculer sa puissance en montée, sur le plat
ou en descente?
TOUJOURS EN MONTÉE car le coecient de frottement
de l’air est dicile à préciser exactement, et le vent peut jouer
des tours pendables sur le plat ou en descente (voir le chapitre
3 « Le cycliste dans le vent »).
2/ Ma monture et moi même ne totalisons pas 15 + 65 =
80 kg comme l’ensemble présenté, mais 14 + 50 = 64 kg.
Comment calculer ma puissance?
Il sut de noter sa vitesse dans une MONTÉE sérieuse, de
pente connue, de lire la puissance sur la gure 3, et ensuite de
la diviser par 80 (masse totale considérée dans la gure) et de
la multiplier par sa propre masse, ici 64: c’est la bonne vieille
règle de 3.
Il aurait été possible de simplier ce calcul en prenant 100 kg
pour la masse totale, mais 80 kg est sans doute plus proche de
la moyenne des équipages. Le chapitre 2 « Le cycliste par monts
et par vaux » nous apprendra à nous passer de la masse.
En fait ce qui caractérise le mieux les performances d’un
athlète en général, cest plus sa puissance par kilogramme que
sa puissance elle même.
Figure 4 : la « formule minute ».
Pour un même nombre de watt/kg, deux randonneurs de masses
diérentes rouleront à des vitesses très proches.
3/ Comment faire si je suis comparable au randonneur
considéré, mais que j’ai des pneus super gonés, et que je
roule sur un asphalte parfait, ce qui me laisse penser que mon
coecient de roulement sur le sol est négligeable?
Dans ce cas il faut décaler toutes les courbes, qui sont conçues
pour un frottement de 0,5 %. Pour ce faire, le plus commode
est de tracer le nouvel axe vertical de la pente zéro en lieu et
place de la pente - 0,5 % de la gure 3. Toutes les vitesses vont
évidemment augmenter.
Par contre, pour un VTT de coecient de frottement sur route
égal à 1 %, il faut passer de l’autre côté et tracer ce nouvel axe
vertical en 1 % - 0,5 % = + 0,5 %: les vitesses diminuent.
Une autre possibilité est de tracer la vitesse en fonction de p+f
(voir le chapitre 2).
4/ J’aimerais bien calculer moi-même ma puissance mais je
ne connais pas mon SCx. Comment le déterminer ?
Première solution, aller sur internet… et bien croiser les
informations. Deuxième solution, plus viviante, s’orir une
belle descente, ou un aller et retour sur le plat, et exploiter
l’annexe 2 en n de chapitre.
H / Tout ca me prend la tête...
... mais j’aimerais quand même connaître la puissance que je
développe. Pourrais-je l’estimer facilement sans tout ce qui
précède… ? Pan sur le bec!
C’est possible : voir la gure 4.
Se peser avec son vélo préféré (total = m), rouler dans une
montée de dénivelé h, régulière, et en tous cas dépourvue de
descente, de pente supérieure à 6-7 % en moyenne, et noter le
temps t d’ascension. Et voilà la puissanceen watt, calculée avec
le travail du poids seul :
P = m g h / t 10 m h / t (car g ≈ 10)
Pour faire bonne mesure on ajoutera 10 % au résultat trouvé,
pour prendre en compte approximativement les frottements sur
le sol et dans l’air.
Exemple: masse 70 kg, montée de 600 mètres de dénivelée en
1 heure.
P = 10 m h / t = 10 x 70 x 600 / (1 x 60 x 60) = 117 watts,
auxquels on ajoute 10 %, soit nalement presque 130 watts.
En résumé, on pourra utiliser la relation:
P ≈ 1 1 m h / t
avec P en W, m en kg, h en mètres (montée), t en secondes.
P (watt) ≈ 11 m h / t
m = masse de l’attelage
t : temps en secondes
h : dénivelée en mètres
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !