Licence de Physique Parcours PGA
2005-2006
Optique
Réflexion, réfraction, formules de Fresnel
----------------------------
Exercice 1 : Modification de la polarisation par reflexion
Une lumière polarisée linéairement est incidente avec θ = 60 ° sur une surface de verre
( n verre = 1,560). Son champ électrique fait un angle de 20° avec le plan d'incidence (L'angle
d'une droite et d'un plan est l'angle de cette droite et de sa projection sur le plan). Exprimer et calculer
numériquement:
-La composante du champ électrique perpendiculaire au plan d'incidence
-La composante du champ électrique parallèle au plan d'incidence
-L'angle de réfraction
-les coefficients de reflexion
Calculer l'angle du champ électrique réfléchi avec le plan d'incidence. Commenter sa valeur
Exercice 2 : réflexion d'une lumière partiellement polarisée
Dans les problèmes liés à la polarisation de la lumière concernant un faisceau de lumière naturelle, tout se passe comme
si un faisceau de lumière naturelle , d'intensité 2I, était formé de deux sous-faisceaux indépendants d'intensité I,
polarisés à 90° l'un de l'autre. Peu importent les directions de polarisation choisies, pourvu qu'elles soient
orthogonales.On choisira ici l'une des directions perpendiculaire au plan d'incidence et l'autre dans le plan d'incidence
De la lumière naturelle non polarisée rencontre une surface de verre ( n = 1,50) sous
un angle d'incidence de 30°. Calculer les amplitudes et les intensités de la lumière réfléchie
parallèle et perpendiculaire au plan d'incidence. Calculer le degré de polarisation de la
lumière réfractée I=I
I=+I
. Quel est le flux total d'énergie dans le faisceau réfracté, exprimé en
% par rapport à celui du faisceau incident.
Sous quel angle faudrait il envoyer le faisceau pour avoir une lumière réfléchie
totalement polarisée
Exercice 3 : réfllexion totale, polarisation
verre
De la lumière polarisée linéairement est incidente avec θ = 45°
sur l'hypothénuse d'un prisme de verre ( n = 1,52) Faire un
schéma représentant le faisceau réfléchi et, s'il existe, le faisceau
transmis.
La lumière incidente est polarisée rectilignement à 45° du
plan d'incidence. Quelle est la polarisation de la lumière
réfléchie? Faire un schéma.
Ce prisme reçoit maintenant normalement à une petite face, un
faisceau parallèle de lumière naturelle. La lumière émergente est
elle naturelle ou partiellement polarisée?
Exercice 4: Réflexion totale; fibre optique.
Une fibre optique est constituée d'un cylindre d'indice de réfraction n1 = 1,460, appelé coeur,
entouré d'une gaine cylindrique de même axe, d'indice de réfraction n2 = 1,465. 5 (voir figure)
in1
face d'entrée
θ
1) Déterminer littéralement et numériquement l'angle limite de réflexion totale à l'interface
coeur-gaine.
2) La face d'entrée de la fibre est plane et se trouve dans l'air ( n = 1). On s'intéresse à un
rayon lumineux qui pénètre dans la fibre au poit O, sur l'axe de la fibre, avec un angle
d'incidence i.
Montrer que, pour que les rayons qui pénètrent dans la fibre au point O soient guidés par
réflexion totale sur l'interface coeur-gaine, il faut qu'ils soient contenus dans un cône de demi
angle d'ouverture i0 que l'on déterminera littéralement et numériquement
3) Au vu du résultat numérique obtenu pour i0, expliquez pourquoi il faut utiliser un laser
pour alimenter en lumière une fibre optique
Exercice 5: Lame à faces parallèles à l'incidence brewstérienne.
Une lame à faces parallèles, ( d'indice n2) , plongée dans l'air ( indice n1) est éclairée en
incidence brewstérienne par une lumière naturelle.
1) Après avoir revu dans le cours ce qu'est l'incidence brewstérienne, indiquez la polarisation
de la lumière pour le premier faisceau transmis.
2) Montrer que ce premier faisceau transmis aborde la deuxième face de la lame ègalement à
l'angle de Brewster.Que peut on alors conclure sur le premier faisceau transmis?
3) Conclure sur le taux de polarisation de la lumière totale , réfléchie et transmise, en tenant
compte des réflexions multiples
Problème : Réflexion totale; onde évanescente (extrait d'un problème d'examen)
x
y
z
air
eau
Une onde monochromatique plane, de pulsation ω,
polarisée suivant l'axe z, se propageant dans l'eau, rencontre
l'interface plane eau-air(xOz) sous un angle θ=45°. Les
paramètres de l'eau sont, à la pulsation de travail, εr = 81,
µr = 1 et l'eau sera ici considérée comme un diélectrique
parfait. La longueur d'onde dans le vide est λ= 0,3 m.
1) Montrer que ce cas correspond à une réflexion totale.
2) Après avoir calculé les composantes du champ magnétique de l'onde incidente,
montrer qu'un champ électromagnétique nul dans l'air (on a alors, donc, uniquement une
onde incidente et une onde réfléchie).ne permet pas de vérifier les relations de continuité
des composantes du champ électromagnétique à l'interface
r
3) On prend alors dans l'air un champ électrique de la forme:
=T ejβxe−αyejωtr
u
z
E
Déterminer β (en écrivant qu'il y a continuité de la composante tangentielle du champ électrique), α (en
utilisant l'équation de propagation deu champ électrique dans l'air), et T ( en reprenant les relations de
continuité) en fonction de ω, c, n(indice de l'eau), θ et Ei (amplitude de l'onde incidente).
Le calcul du coefficient de réflexion en amplitude R, bien qu'intervenant dans le calcul, n'est demandé qu'en
question 4
Justifier, à l'aide des valeurs numériques, le terme d'onde de surface donné au champ
électromagnétique dans l'air.
4) Calculer l'amplitude complexe du champ réfléchi et justifier le terme de "réflexion totale"
donné à ce phénomène.
5) Montrer qu'en valeur moyenne au cours du temps, aucune énergie ne traverse un plan situé
dans l'air, parallèle au plan xOz, ce qui justifie d'une autre façon le terme de réflexion totale
FORMULES DE FRESNEL
------------------------
Formules des coefficients de réflexion et de réfraction:
---------------------------
r=n1cos i n2cost
n1cosi +n2cost =sin(t i)
sin(t +i)
r==n1cost n2cosi
n1cos t +n2cosi =tg(t i)
tg(t +i)
t=2n1cosi
n1cosi +n2cos t =2sin t cosi
sin(t +i)
t==2n1cosi
n1cos t +n2cosi =2 sint cos i
sin(t +i)cos(t i)
En incidence normale
r=r==n1
n2
n1+n2
t=t==2n1
n1+n2
figures pour l'orientation des axes (formules algébriques)
Ei Er
Et
ii
t
n1
n2
n1sin i = n2 sint
Ei
Er
Et
ii
t
n1
n2
n1sin i = n2 sint
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !