INTRODUCTION À LA PHOTONIQUE Partiel du 21 février 2014 – 9h

Université Paris-7 Master 1 2013-2014
1/3
INTRODUCTION À LA PHOTONIQUE
Partiel du 21 février 2014 – 9h-12h
Tous types de documents, de téléphones ou d’ordinateurs portables sont interdits.
I Dimension transverse d’un faisceau lumineux Dans l’espace libre, une onde optique de
pulsation
est formée d’une superposition à poids égaux d’ondes planes progressives de même
pulsation, dont les vecteurs d’onde sont (en posant
k0=
/c
)
k(
)
=
k
0
cos
u
z
+k
0
sin
u
x
,
|
|
<
« 1 : son champ électrique est
E(z,x,t)
=
Re
{ uy Ey(z,x,t) }
avec
E
y
(z,x,t) = E
0
d
+
exp[i(
tk
0
cos
zk
0
sin
x)]
.
(L’onde est polarisée linéairement suivant y.)
En utilisant
k(
)
exprimé à l’ordre
1
en
, montrer que l’onde possède une extension transverse
x
1/
k0
, c’est-à-dire
x
1/
k
avec
k=
2
k0
. Que vaut environ
si
x=1
mm
?
II Polarisation elliptique variable Une onde optique monochromatique plane se propage
suivant les
z croissants ; elle possède l’enveloppe complexe suivante :
E
0 = E0 [ ux + ei
uy]
,
est un angle quelconque. Montrer que les axes principaux de l’ellipse de polarisation de
l’onde sont les bissectrices des axes
x
et
y
. Discuter cette polarisation en fonction de
.
III - 1 Lame demi-onde Quel est l’effet d’une lame demi-onde sur un faisceau polarisé
linéairement ? sur un faisceau polarisé circulairement ? Détailler l’emploi d’une telle lame.
III - 2 Lame quart d’onde Quel est l’effet d’une lame quart d’onde sur un faisceau polarisé
linéairement à
±
45
° des axes neutres de la lame ? polarisé circulaire gauche ou droite ? polarisé
elliptiquement, les axes principaux de l’ellipse étant alignés avec ceux de la lame ?
y z
x
k(
)
Université Paris-7 Master 1 2013-2014
2/3
III - 3 Deux lames quart d’onde en cascade Montrer que deux lames quart d’onde placées
l’une à la suite de l’autre sur un faisceau sont équivalentes à une lame demi-onde si les axes
rapides des deux lames sont alignés. Et si les axes rapides sont orthogonaux ?
III - 4 Lame optique d’ordre zéro Les indices de réfraction principaux du quartz (qui est un
milieu uniaxe) sont
n
e
=1,552
et
no=1,543
, à la longueur d’onde
0
=633 nm
.
a) À cette longueur donde, quelle est environ l’épaisseur d’une lame demi-onde d’ordre zéro ?
b) Pour des raisons mécaniques évidentes, il est hors de question de pouvoir fabriquer et
manipuler une lame optique de si faible épaisseur. Comment parvient-on à réaliser une lame
optique d’ordre zéro, en accolant deux lames raisonnablement épaisses ? (Cf. exercice III-3.)
IV Prisme de Rochon Un prisme de Rochon est fabriqué en calcite (
ne=1,49
,
no=1,66
).
a) Identifier sur la figure ci-contre les polarisations
linéaires des faisceaux émergents.
b) Trouver l’expression de laparation angulaire
i
D
entre les deux faisceaux émergents. Montrer que
i
D
(none)
tg
A
lorsque
n
o
n
e
«
n
e
. Estimer
i
D
si l’angle des demi-prismes est
A=45°
.
V - 1 Biréfringence circulaire Un milieu optiquement actif est un milieu possédant de la
biréfringence circulaire : les modes propres de propagation d’une onde plane monochromatique y
sont polarisés circulairement gauche et droite, par référence à la direction et au sens de
propagation ; les indices de réfraction propres associés sont notés
ng
et
nd, respectivement. Une
onde lumineuse monochromatique (de pulsation
) arrive en incidence normale sur un tel milieu
(situé entre
z=0
et
z=d
) ; la polarisation linéaire de cette onde est repérée par l’angle
qu’elle
fait avec l’axe
x
d’un repère arbitraire
xy
orthogonal à
z. On néglige tout effet de réflexion aux
interfaces air-milieu (
z=0
) et milieu-air (
z=d
).
a) Écrire l’amplitude complexe
E
(z
<
0) = E0 (cos
ux+ sin
uy) exp( i k0z)
de l’onde
incidente, où
k
0
=
/c
, sur les états de polarisation circulaires gauche et droite, qui sont
ug=
(ux
i
uy)
/
2
et
ud= (ux+ i uy) /2 respectivement.
A
i
D
Université Paris-7 Master 1 2013-2014
3/3
b) En déduire l’amplitude complexe
E
(0
<
z <
d)
de l’onde à l’intérieur du milieu ; on posera
n
=
(ng+
nd)
/2
et
n = nd ng. Quel est le pouvoir rotatoire
du milieu ?
c) Exprimer l’amplitude complexe de l’onde émergente (
z >
d)
. Quelle est sa polarisation ?
V - 2 Modulateur à effet Faraday Un faisceau lumineux monochromatique incident, polarisé
linéairement, passe suivant l’axe z au travers d’un barreau de longueur d, taillé dans un milieu
présentant de l’effet Faraday. Après le barreau est positionné un polariseur dont la direction
passante fait l’angle
avec celle de la polarisation incidente. Le champ magnétique longitudinal
B
s
qui règne dans le barreau est créé par un bobinage qui l’entoure ; ce bobinage est parcouru par
un courant électrique d’intensité
I(t)
. Cette intensité
I(t)
varie sinusoïdalement, et le champ
Bs(t) = Bs(t) uz
oscille lui aussi de façon harmonique :
Bs(t)
= B0
cos
t
.
a) Montrer que, dans ces conditions, la polarisation linéaire à la sortie du barreau a une direction
oscillante, et que la puissance lumineuse après le polariseur possède une composante de
modulation à la pulsation
(on suppose |
V
B0
d
| « 1, où V est la constante de Verdet).
b) Quelle(s) valeur(s) de
maximise(nt) l’amplitude de cette modulation de puissance ?
FIN
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !