Compte rendu du séminaire du FIP
du mardi 4 Avril
En route vers l’ordinateur quantique ?
Denis Vion (CEA Saclay)
Rapporteurs :
Pons Adeline et Godfroy Quentin
La physique quantique recèle de richesses impensables en physique classique, comme
l’ « enchevêtrement quantique d'états », ressource qui pourrait être exploitée pour traiter
l'information bien plus efficacement qu'avec les méthodes actuelles. L’invention
d'algorithmes quantiques a ainsi conduit au rêve d'un ordinateur quantique capable d'effectuer
des calculs hors de portée des ordinateurs « classiques » présents et futurs. Malheureusement,
la disparition rapide des états enchevêtrés d'un système, ou "décohérence", fait de la
réalisation de l'ordinateur quantique un véritable défi. De nombreux groupes de recherche
tentent de le relever en utilisant comme éléments mémoires de base, encore appelés « bits
quantiques », des atomes, ions ou électrons isolés, des spins nucléaires, ou même des objets
solides macroscopiques comme les circuits électriques quantiques développés par les
chercheurs du laboratoire de CEA de Saclay.
I. De l’ordinateur classique à l’ordinateur quantique :
L’ordinateur classique :
Un ordinateur classique, est une machine qui en entrée reçoit un signal en bits
(composé de 0 et 1) et donne en sortie un autre signal traité à l’aide d’un algorithme (réseau
de portes logiques).
En 1937, Turing a montré que tout ordinateur pouvait être remplacé par un ordinateur
universel moyennant l’ajout de
2
log ( )
N
bits ce qui donne un ralentissement polynomial.
Mais, cet ordinateur peut entrer dans une boucle infinie qui le fait planter. Pour pallier
à ce problème, on rajoute des codes correcteurs comme les bits de parité.
Vers l’ordinateur quantique :
Grâce à l’interférométrie Mach-Zender d’un photon unique (possible seulement depuis
5 ans), on montre qu’un photon peut parcourir deux chemins différents au sens des
interférences. Le photon est dans une superposition de plusieurs états, mais qu’on effectue une
mesure, on détruit la cohérence.
Unité élémentaire d’information quantique : le qubit
0
x
a
=
mesure projective :
|0> avec la probabilité |α
ou |1> avec la probabilité |β
Un qubit peut être représenté dans la sphère de Bloch.
Par contre, la duplication d’un qubit est impossible et la
mesure ne donne accès qu’à un seul des coefficients (d’après le
théorème de projection).
En physique quantique, les portes logiques sont des
opérateurs unitaires (composition de rotations).
Turing
(1937)
T
0
1
1
0
1
0
1
0
(N états)
0
U
1
0
1
0
0
1
1
0
1
1
0
0
ralentissement
poly(n)
n=Log
2
(N)
2 2
cos sin
2 2
0
1
i i
e e
ϕ ϕ
θ θ
− +
+
θ
ϕ
0
1
x
y
z
2 2
cos sin
2 2
0
1
i i
e e
ϕ ϕ
θ θ
− +
+
θ
ϕ
0
1
x
y
z
θ
ϕ
0
1
x
y
z
Par rapport aux bits classique, le contenu informationnel est le même, mais l’intérêt du
qubit repose sur sa capacité à être enchevêtré et donc à faire toutes les opérations en même
temps.
L’ordinateur quantique :
C’est un ensemble de N qubit, ce qui fournit une base de
2
N
états.
De même, il existe un ordinateur quantique universel qui permet de simuler n’importe
quel système à deux niveaux. Ici aussi, on représente les algorithmes par un réseau de portes
logiques mais qui s’appliquent à tous les états en même temps. Par contre, cette physique
étant régie par un hamiltonien, le nombre d’entrées et de sorties doit être le même afin
d’assurer la réversibilité du système.
A l’heure actuelle, les théoriciens n’ont trouvé que deux algorithmes viables. L’un
d’eux sert à déterminer la période d’une fonction : méthode de Shor (1994). L’algorithme
utilise la mécanique quantique pour sélectionner tous les x° tels que f(x°)=f° (f° quelconque).
La différence entre deux x° est un multiple de la période qui est alors déterminé par un
algorithme classique.
L’application principale est la factorisation des grands nombres qui intéresse les
cryptographes. En effet, le temps de décryptage avec un ordinateur classique augmente
exponentiellement avec la taille de la clef, tandis que avec un ordinateur quantique, il
augmente polynomialement.
Le gros problème des machines quantiques, est la décohérence : en effet, il est dur de
maintenir la superposition des états. Cette décohérence est provoquée par deux phénomènes :
- « la mort subite » (projection du système sur un état :
0
x
a
=
) dû à des effets de
découplages et de relaxations
- la dérive de phase due à des degrés de liberté que l’on ne maitrise pas
II . Réalisation des bits et processeurs quantiques :
Deux méthodes sont adoptées, soit on utilise des systèmes déjà quantiques que l’on
tente de maitriser (ions, atomes froids, molécules spinales...), soit on fabrique des systèmes
quantiques plus gros.
La plus belle réussite a été obtenue grâce à une molécule spinale : elle a permis de
factoriser 15, le tout en 5 s ! Dans cette méthode, chaque molécule équivaut à un ordinateur
quantique.
0110...010
x
i
x
e xreg a
ϕ
= =
2 dangers :
mort
subite
maladie:
x
ϕ
dérive de
010001...1
p
=
n
Qubits supraconducteurs :
C’est ce qui est étudié à Saclay.
Dans un supraconducteur, il se forme des paires d’électrons (paires de Cooper) qui
forment un condensat de Bose-Einstein à basse température. A cette température, l’agitation
thermique est plus faible que la différence d’énergie entre le fondamental et le premier niveau
excité, de telle sorte que le système est peu perturbé par l’extérieur et donc peu sujet à la
décohérence. En mettant deux supraconducteurs à proximité, on réalise une jonction
Josephson.
Quantronium :
Son principe est de faire passer des paires de Cooper d’un supraconducteur à l’autre
par le biais de jonctions Josephson soumises à un potentiel, ce qui crée une différence à la
neutralité. Ce système est caractérisé par deux paramètres :
-N=nombre de paires de Cooper ayant migré.
-θ=phase supraconductrice de l’îlot, c’est la variable conjuguée de N.
Le système est piloté par :
-Φ=le flux magnétique qui traverse la boucle de courant.
-
g
N
=
le nombre de paires de Cooper en excès imposé par le potentiel U (on ne peut avoir que
des nombres entier de paires (N), mais
g
N
n’est pas entier).
Le hamiltonien du système vaut :
Le premier terme est assimilable à une énergie cinétique et le deuxième à une énergie
potentielle : le système agit comme un gros atome avec un effet Zeeman et un effet Stark
grands. Mais ceci ne marche qu’à froid, car les fréquences de transition sont de l’ordre de la
dizaine de GHz.
Tout ce passe donc comme avec un système atomique, on utilise les méthodes de la
physique atomiques : les tensions micro-ondes étant l’analogue des excitations au LASER. La
lecture s’effectue par disjonction de seuil.
Fabrication du quantronium :
Cela se réalise par lithographie électronique sur une double couche de PMMA, l’une
dure, l’autre molle, ceci afin de réaliser un masque comme en suspens au dessus du substrat
îlot
supra.
réservoir
ˆ
N
φ
2
)
ˆˆ
ˆ
θ
= − − φ
gc J
H E ( E cos cos
NN
de
2
SiO
suivie d’un dépôt d’Al par évaporation sous deux angles différents. Les
recouvrements servent de jonctions Josephson.
Il réagit comme un atome de qualité moyenne. Et grâce à l’interférométrie Ramsey, on
a réalisé une porte NOT.
En se plaçant au point scelle de cheval de l’énergie de transition, on arrive à
augmenter la durée de décohérence jusqu’à 500 ns et éviter la mort subite jusqu’à 2µs.
Perspectives :
L’ordinateur n’arrivera pas avant longtemps (Steane en 1997 parlait de 20 ans…).
Les perspectives réalistes, sont de réaliser une porte SWAP en couplant deux
quantriniums.
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !