Compte-rendu du séminaire du prédoctorat de Physique
du mardi 4 avril 2006
En route vers l’ordinateur
quantique ?
Denis Vion (CEA Saclay)
Irène Balmès et Anaëlle Hallé
1 Introduction
Les nombreuses richesses de la mécanique quantique telles que "l’enchevêtrement quantique
d’états" font rêver à un ordinateur quantique qui pourrait effectuer des calculs impensables pour
des ordinateurs "classiques". La réalisation d’un tel ordinateur est aujourd’hui un défi que tentent
de relever de nombreux laboratoires ; celui dont fait partie Denis Vion au CEA de Saclay utilise
comme éléments mémoires de base, encore appelés « bits quantiques », des circuits électriques
quantiques.
2 Eléments de théorie
2.1 Du bit classique au bit quantique
Türing en 1937 a montré que toute machine classique recevant des bits en entrée (des 0 ou
des 1), les traitant et en délivrant en sortie peut être simulée par une machine universelle. Dans
ce cadre classique, les éléments d’informations que sont les bits ont un contenu informationnel :
S(p=P(0)) = pln (p)(1 p) ln (1 p)[0,1]
et peuvent en effet être traités par un jeu universel de portes logiques : NOT et AND.
L’unité élémentaire d’information quantique est le qubit :
|qbi=α|0i+β|1i
Par mesure, on projette donc le qubit dans l’état |0iavec une probabilité |α|2, et dans l’état
|1iavec une probabilité |β|2. La duplication d’un bit quantique est ainsi impossible car on le
détruit en le mesurant.
On peut aussi représenter le qubit par cos θ
2eiφ
2|0i+ sin θ
2eiφ
2|1ien utilisant la sphère
de Bloch :
Fig. 1 – Sphère de Bloch
Les portes quantiques sont des opérations unitaires, des rotations sur cette sphère, telle que
la porte de Hadamard :
H=1 1
11
1
En utilisant l’opérateur densité ρ=Pp(x)|xi hx|, le contenu informationnel d’un qubit est :
S=T r (ρln ρ)[0,1]
Il n’est donc pas plus grand que pour un bit classique. L’intérêt des qubits vient de leur
capacité à être enchevêtrés.
2.2 L’ordinateur quantique
L’ordinateur quantique est un ensemble de n qubits : |01001...0ice qui fournit N= 2nétats
de base. Il existe aussi un ordinateur quantique universel qui peut simuler toutes les évolutions
unitaires et les mesures, grâce à un jeu universel d’opérations à un qubit et du XOR quantique.
L’algorithme de Shor (1994) permet ainsi de déterminer la période d’une fonction beaucoup
plus vite que classiquement. Son intérêt principal est la factorisation des grands nombres (pour
la cryptographie) dont la durée en fonctions de la quantité de chiffres du nombre à factoriser
augmente beaucoup moins vite pour un ordinateur quantique que pour un classique.
2.3 La décohérence
Le gros problème des ordinateurs quantiques est la décohérence. Ainsi pour le registre de
qubits :
|regi=Xaxex|x= 0110...010i
il peut y avoir "mort subite" d’un des ax(par découplage ou relaxation) ou "maladie", c’est-à-dire
dérive lente, d’un des φxdu fait de degrés de liberté non maîtrisés.
3 Réalisation
Il y a deux approches possibles pour réaliser des bits quantiques : la première consiste à uti-
liser des objets naturellement quantiques, tels que des ions ou des atomes en cavité, la deuxième
à utiliser des objets difficilement quantiques, tels que les circuits supraconducteurs, mais faciles
à intégrer.
A l’heure actuelle, la meilleure expérience réalisée a été obtenue par la première approche, et a
consisté à factoriser 15 à l’aide de 1020molécules constituant chacune un "ordinateur quantique"
(il faut un grand nombre de molécules pour obtenir un signal assez fort. Si cela était possible, il
serait en realité plus efficace de n’utiliser qu’une seule molécule).
3.1 Les qbits supraconducteurs
Dans les supraconducteurs, les électrons forment des paires appellées paires de Cooper, et
sont dans un état de condensat de Bose. Il faut donc founir une énergie 2∆ au système pour
l’exciter.
Pour constituer un qbit à l’aide de supraconducteur, on place deux électrodes supraconduc-
trices séparées par une mince barrière (environ 2 nm). Les paires de Cooper d’électrons peuvent
sauter d’un supraconducteur à l’autre. Le symbole dans le système international de cette jonction
appellée jonction Josephson est :
2
Fig. 2 – Jonction Josephson
Le Quantronium, sorte de boîte à paire de Cooper, est constitué de deux jonctions Josephson
qui séparent un ilôt d’un réservoir. Il n’y a qu’un degré de liberté, les degrés de liberté microsco-
piques étant gelés , qui est la valeur moyenne de Ng, le nombre de paires de Cooper attirées sur
l’ilôt. La valeur de Ngest déterminée par la tension Uappliquée. On a en effet : Ng=CgU
2e. La
variable conjuguée de Ngest θ.
Les deux moyens d’agir sur le quantronium sont donc d’une part la tension Uet d’autre
part le flux φqui passe à travers la boucle constituée des deux jonctions Josephson et des deux
supraconducteurs. Le système possède deux énergies caractéristiques : Ec=(2e)2
2Cilot et l’énergie
Josephson EJ, qui résulte de la différence de θentre les deux supraconducteurs.
Le Hamiltonien du système est : H=Ec(NNg)2EJcos φcos θ.
Le premier terme détermine la frustration du système, c’est-à-dire la différence entre le nombre
de paires de Cooper qui sont effectivement passées sur l’ilôt et le nombre de paires de Cooper qu’on
essaye d’attirer (qui peut ne pas être un nombre entier). Les états stationnaires de ce Hamiltonien
sont discrets. Le circuit se comporte comme un atome artificiel, qui ne fonctionnerait qu’à basse
température.
3.2 Lecture du Quantronium
Pour lire l’état du Quantronium, on utilise une troisième jonction Josephson, qui sert de
disjoncteur, associée à un voltmètre, et on fait passer dans cette boucle un courant de lecture i
proche du courant de disjonction I.
Fig. 3 – Circuit, lecture et pilotage
Selon l’état du système, le courant dans la boucle qui contient les trois jonctions Josephson
est dans un sens ou dans l’autre, le courant de lecture est donc inférieur ou supérieur au courant
de disjonction. Suivant l’état du système, il y a donc ou non disjonction de la troisième jonction
Josephson.
3
3.3 Fabrication du Quantronium
Le Quantronium est fabriquée sur un substrat de SiO2, sur lequel on met un plastique mou
puis un plastique dur qui serviront de résine. On grave alors sur les plastiques la forme du circuit
voulue. Le plastique mou est plus gravé que le plastique dur, et il y a donc une sous-gravure
importante.
On dépose une première couche d’aluminium en orientant l’échantillon sous un certain angle,
puis on oxyde cette couche, on change l’angle de l’échantillon et on dépose une nouvelle couche
d’aluminium. Comme l’angle de l’échantillon a été changé, les deux couches d’aluminium ne se
recouvrent qu’à certains endroits. Au niveau des recouvrements, on a des jonctions Josephson
Al Al2O3Al. Une fois ces opérations effectuées, on enlève les plastiques qui ont servi de
résine.
3.4 Réussites et problèmes
Pour utiliser le Quantronium, il est nécessaire de le placer à basse température. On utilise
pour cela un réfrigérateur qui descend à 20 mK environ.
On arrive grâce au Quantronium à réaliser une porte quantique NOT, en effectuant un demi-
tour autour de X sur la sphère de Bloch. On peut également faire tourner l’état autour de l’axe
-Y. Il est donc possible de réaliser toutes les portes quantiques à partir du Quantronium.
On rencontre principalement deux problèmes pour faire fonctionner correctement le Quan-
tronium, qui sont la mort subite du qbit et la perte de la phase, qui est plus lente.
La mort subite du qbit est un phénomène de décohérence dû à l’environnement et au fait que
le qbit est un objet macroscopique.
La perte de phase est aussi due à l’environnement, qui induit un changement de la phase de
l’état quantique. Le temps caractéristique de ce phénomène est 500 ns.
4 Questions
Le refroidissement à quelques mK est-il toujours obligatoire pour obtenir un qbit ?
L’énergie est proportionnelle à l’inverse de la taille : le choix de Quantum Electronics Group
est de travailler sur des objets de grande taille par rapport aux objets quantiques habituels,
ce qui impose donc de travailler à basse énergie et à basse température. Cependant, pour les
réalisations techniques et les applications, utiliser de petits objets semblent une meilleure
option.
Le contraste sur l’oscillation de Rabi n’est pas 100%. Pourquoi ?
Ce phénomène est du à un problème de détecteur qui est débranché à l’origine pour éviter la
décohérence. Sa mise en route augmente la relaxation du bit quantique et fait donc perdre
du contraste. Certains groupes ont réussi à éliminer en partie ce problème. Le meilleur
contraste obtenu est de 80%, avec un détecteur single-shot.
4
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !