Performance diagnostique de la radiographie de thorax double

publicité
Performance diagnostique de la
radiographie de thorax double énergie
par rapport à la radiographie simple
V Bricot, O Delval, F Saccardy, S Velasco, M Bihan, F Staub, C Prevost,
JP Tasu
INTRODUCTION
Rappels sur la radiographie pulmonaire
- méthode d’imagerie simple
- outil indispensable de la pratique clinique quotidienne
- la radiographie numérisée constitue une des évolutions majeures de la
radiographie conventionnelle
- la numérisation des radiographies a ouvert de nouvelles perspectives dans le
traitement de l’image comme la possibilité de soustraire des images
RAPPELS SUR LA TECHNIQUE DOUBLE ENERGIE
- La technique de double énergie est basée sur la soustraction réciproque de
deux radiographies exposées à haute et basse énergie
- L’ énergie dont il est question correspond à celle des photons X employés
- Il s’agit en fait d’une énergie moyenne car les tubes à rayons X ne peuvent
fournir un rayonnement mono-énergétique
QUELS INTERETS ?
Elle permet d’obtenir, par un traitement algorithmique, deux radiographies
soustraites
1. - Une radiographie « os » où le contraste des tissus mous est nettement diminué
et le contraste des éléments anatomiques calcifiés est « rehaussé »
2.- Une radiographie « tissu mou » où le contraste des tissus calcifiés est presque
totalement effacé laissant apparaître les parties molles
LA TECHNIQUE DOUBLE ENERGIE
SOUSTRACTION
Radiographie
basse énergie
“Os”
Traitement
Tissus
“mous”
Traitement
Standard
“os”
Soustraction
Images brutes
Radiographie
haute énergie
Traitement
“Tissus
mous”
LA TECHNIQUE DOUBLE ENERGIE
LES IMAGES OBTENUES
Radio standard haute énergie
Image tissu mou
(soustraction)
Image os
(soustraction)
Sur quelle base physique repose cette soustraction ?
LA TECHNIQUE DOUBLE ENERGIE
BASE PHYSIQUE
La radiographie double énergie exploite la variation du coefficient d’atténuation µ
en fonction de l’énergie du rayonnement X utilisé
- le coefficient d’atténuation µ est une caractéristique du tissu traversé
- plus le tissu est composé d’élément de numéro atomique (Z) élevé et plus ce
coefficient est élevé
- ce coefficient est variable en fonction de l’énergie du rayonnement et
d’autant plus que le milieu traversé présente un Z moyen élevé
Os
Tissu mou
Os
Tissu mou
Basse
énergie
Haute
énergie
Coefficient d’atténuation en fonction de l’énergie du faisceau incident
L’os et les tissus mous ayant un Z différent, ont une atténuation différente, cette différence
étant plus importante si l’énergie incidente est faible (zone entourée en vert))
HISTORIQUE DE LA DOUBLE ENERGIE
La première technique a été celle de la simple exposition : un filtre était
utilisé pour arrêter le rayonnement de basse énergie ce qui permettait
d’obtenir deux images, une haute énergie et une basse.
Cette technique réduisait le signal (en raison du filtre) de l’image haute
énergie, à irradiation équivalente.
RAYON
X
RADIOGRAPHIE BASSE ENERGIE
FILTRE
RADIOGRAPHIE HAUTE ENERGIE
HISTORIQUE DE LA DOUBLE ENERGIE
LA TECHNIQUE DOUBLE ENERGIE DOUBLE EXPOSITION
La technique double énergie double exposition consiste à réaliser deux
expositions successives, une à haute énergie et une à basse énergie.
L’intérêt de cette méthode est de conserver un rapport signal bruit
optimal et d’obtenir une meilleure séparation énergétique des deux
faisceaux.
Le problème principal est de limiter les artéfacts de mouvements entre
les deux expositions en réduisant la latence inter-exposition.
X BASSE TENSION
60 KV
X HAUTE TENSION
120 KV
RADIOGRAPHIE BASSE ENERGIE
RADIOGRAPHIE HAUTE ENERGIE
DETECTEUR
Sabol JM et al. Proc SPIE 2001
Exposition haute énergie
haut kV
Illustration du spectre énergétique
obtenu avec la technique simple et
double exposition. Elle met en
évidence l’amélioration de la
séparation énergétique par la
technique double exposition
permettant une meilleure
soustraction.
QUELS BENEFICES ATTENDRENT DE LA DOUBLE
ENERGIE?
L’obtention d’un cliché partie molle et d’un cliché os devrait permettre de
mieux analyser chacun de ces éléments séparément.
Il existe quelques études qui montrent des résultats en faveur de
l’utilisation de cette technique par rapport à la technique standard.
- une amélioration de le performance diagnostique de détection des
nodules pulmonaires en général et une caractérisation plus aisée de la
charge calcique des nodules pulmonaires ( Fraser RG Radiology 1986)
- une amélioration de la performance diagnostique de détection des lésions
thoraciques calcifiées en général ( médiastinales, pleurales, nodules
pulmonaires calcifiés) (Fischbach F et al. AJR 2003)
- une amélioration de la performance diagnostique de détection des
nodules pulmonaires non calcifiés (Ricke J et al. Eur Radiol 2003)
QUELS BENEFICES ATTENDRENT DE LA DOUBLE
ENERGIE?
Néanmoins, cette technique a été peu analysée de façon globale, sans
sélection a priori des cas où elle serait intéressante (nodule pulmonaire,
calcification..)
Ainsi, aucune étude portant sur l’analyse d’autres anomalies que les
nodules pulmonaires et des lésions thoraciques calcifiées n’est publiée.
Notre objectif est donc d’évaluer l’apport de la technique de double
énergie dans la détection de l’ensemble des anomalies pouvant être
décrites sur une radiographie pulmonaire en incidence de face .
MATERIELS ET METHODES
• Étude prospective, mono-centrique, incluant des patients
volontaires, sélectionnable s’il avaient bénéficié d’un scanner
thoracique le jour même.
• Critères d’inclusion :
- patient adulte
- consentement du patient
• Critères d’exclusion
- patient mineur
-grossesse
- patient ne pouvant supporter ou présentant une contreindication à la verticalisation
MATERIEL ET METHODES
Technique de la radiographie double énergie :
- Réalisée dans les deux heures suivants le scanner thoracique
- radiographie pulmonaire double énergie de face en incidence
postéro antérieure avec la technique de la double exposition
- détecteur : capteur plan silicium /CsI ( Revolution XQ/i, General
Electric Health Care, USA)
MATERIEL ET METHODES
Lecture des radiographies
radiographie pulmonaire standard
Fiche de lecture
Lecture première
Radiographie standard
Fiche de lecture
+
radiographies soustraites
Deuxième lecture
Lecture en consensus
(JPT, OD, VB)
MATERIEL ET METHODES
FICHE DE LECTURE
Pour chaque lecture, les anomalies étaient regroupées en classe selon les
items suivants :
- Nodule
- Anomalie pleurale
- Anomalie bronchique
- Anomalie interstitielle
- Anomalie du cadre osseux
- Anomalie médiastinale
- Autres anomalies
A chaque anomalie décrite, un indice de confiance a été donné compris
entre 1 et 4 ( peu probable, possible, probable, sûr)
MATERIEL ET METHODES
RELECTURE AVEC L’EXAMEN DE REFERENCE
En cas d’interprétation discordante entre la radiographie standard et la
radiographie avec images soustraites, les images ont été comparées avec la
technique de référence (le scanner thoracique)
- La relecture des scanners a été faite en consensus des trois
lecteurs radiologues (JPT, OV, VB)
- Les anomalies ont été classées en FP (faux positifs) ou VP (vrais
positifs)
MATERIEL ET METHODES
ANALYSE STATISTIQUE
• Analyse descriptive
- population
- anomalie (s)
• Analyse comparative
- du nombre de VP et FP pour chaque type d’anomalie par test Khi2.
- de l’indice de confiance pour chaque type d’anomalie par T-test.
RESULTAT
ANALYSE DESCRIPTIVE : POPULATION
• 97 patients inclus
• âge moyen : 64 ans
• 69 hommes et 28 femmes ( sex ratio H/F = 2,5)
• âges extrêmes : 32 – 94 ans
RESULTAT
ANALYSE DESCRIPTIVE : LECTURE DES RADIOGRAPHIES
• 97 cas au total
• 56 cas de lecture concordante, radiographie standard, radiographie double
énergie (14 radiographies interprétées comme normales)
• 41 cas où l’interprétation de la radiographie standard étaient discordantes
avec la radiographie double énergie.
Dont un cas de radiographie standard normale interprétée pathologique
avec la double énergie
RESULTAT
ANALYSE COMPARATIVE : NODULE
• 11 VP et 4 FP en faveur de la double énergie mais sans différence
significative du nombre de nodules détectés (p=0,2796)
• Augmentation significative des indices de confiance pour l’ensemble
des nodules (+ 0,4 en moyenne, p=0,0028) sauf pour :
- nodules non calcifiés (p=0.06)
- nodules situés en superposition osseuse (p=0,06)
- on note toutefois une tendance à la significativité pour ces deux
derniers cas (p ≅ 0,05)
RESULTAT
ANALYSE COMPARATIVE : NODULE
• augmentation significative de l’indice de confiance pour l’ensemble
des nodules VP (+ 0,9 p<0,0001)
• pas de différence significative d’indice de confiance moyen pour
l’ensemble des nodules FP mais une tendance à la diminution ( -0,3 p=
0,063 ≅ 0,05)
RESULTAT
ANALYSE COMPARATIVE : ANOMALIE PLEURALE
• 2 VP en faveur de la technique double énergie et 1 FP en défaveur
de la technique double énergie
• absence de différence significative du nombre de VP et FP (p= 0,42)
• absence de différence significative des indices de confiance (p= 0,13)
RESULTAT
ANALYSE COMPARATIVE : ANOMALIE MEDIASTINALE
• 3 VP supplémentaires en faveur de la double énergie
• absence de différence significative du nombre de VP et FP (p=0,42)
• absence de différence significative des indices de confiance
(p=0,096)
RESULTAT
ANALYSE COMPARATIVE : ANOMALIE OSSEUSE
• 5 VP supplémentaires en faveur de la double énergie
• absence de différence significative du nombre de VP et FP
(p=0,2951)
• absence de différence significative des indices de confiance
(p=0,1176) mais tendance à l’augmentation d’environ +0,8 en
moyenne
RESULTAT
ANALYSE COMPARATIVE : AUTRES ANOMALIES
Anomalies bronchiques, interstitielles
• Absence de paire radiographique discordante
ILLUSTRATIONS
CAS 1
Nodule pulmonaire et ganglion hilaire calcifié . La radiographie soustraite « os » a
permis de bien mettre en évidence la charge calcique et de visualiser un ganglion
calcifié supplémentaire (flèche rouge)
CAS 1
CONTRÔLE TDM
CAS 2
La lésion calcifiée a seulement été détectée sur la radiographie soustraite « os » mais visible a posteriori
sur la radiographie standard et interprétée comme un nodule calcifié.
CAS 2
CONTRÔLE TDM
Il s’agissait en fait d’une plaque pleurale calcifiée. La double énergie a donc amélioré la sensibilité de
cette radiographie pour détecter une anomalie calcifiée mais reste moins puissante que la
tomodensitométrie, comme toute technique d’imagerie en projection.
CAS 3
Un nodule est détecté en projection costale, mais la soustraction « tisssu mou » ne met pas en évidence
de nodule au même emplacement. La soustraction « os » montre plutôt une condensation osseuse
faisant reclasser cette lésion initialement considérée comme « nodule » en « anomalie costale calcifiée»
CAS 3
CONTRÔLE TDM
Le scanner confirme l’existence d’une condensation costale focale
CAS 4
Dans le cas suivant, le nodule visualisé en projection basi-thoracique droite avec la soustraction « tissu
mou » n’a pas été détecté en première lecture avec la radiographie standard, vraisemblablement à cause
des multiples superpositions.
CAS 4
CONTRÔLE TDM
Le scanner confirme la présence du nodule et caractérise mieux la lésion en mettant en évidence une
plage de « verre dépoli » périphérique
CAS 5
Cette masse pulmonaire
apicale droite est bien
entendu détectée par la
radiographie pulmonaire
sans soustraction mais la
soustraction « tissu mou
» en effacant les
superpositions osseuses,
nombreuses dans cette
région anatomique ,
permet de mieux
délimiter cette lésion.
CAS 6
Multiples lésions osseuses condensantes secondaires .
Les flèches rouges montrent des lésions condensantes passées inaperçues sur la radiographie standard
et plus évidente par la soustraction « os ».
CAS 6
CONTRÔLE TDM
Le scanner confirme la présence des lésions osseuses condensantes.
CAS 7
Lésion costale lytique suspectée sur la radiographie et paraissant évidente avec la soustraction « os » (
amélioration de la confiance diagnostique)
CAS 7
CONTRÔLE TDM
Le scanner retrouve une lyse de l’arc antérieur de la deuxième cote gauche, d’allure tumorale.
CAS 8
Elargissement du médiastin antéro-supérieur avec déviation trachéale et calcification du bouton
aortique. La soustraction « os » retrouve une calcification médiastinale supplémentaire.
CAS 8
CONTRÔLE TDM
Le scanner confirme un processus tumoral du médiastin supérieur comportant la calfication détectée sur
la radiographie soustraite
DISCUSSION
RESULTATS PRINCIPAUX
• Augmentation du nombre d’anomalies nodulaires, pleurales,
osseuses, détectées avec les radiographies soustraites double énergie
dans notre étude. Aucune différence détectée pour les anomalies
interstitielles et d’origine bronchique
• Pas d’augmentation du nombre de faux positifs ( sauf pour une
anomalie pleurale mais de façon non significative)
• Augmentation significative de la confiance diagnostique dans la
détection des nodules de façon globale ainsi que pour les sous-groupes
nodules calcifiés.
• Augmentation moyenne de l’indice de confiance des anomalies
osseuses de + 0,8 toutefois non significative statistiquement
DISCUSSION
LIMITES DE L’ÉTUDE
• Biais de recrutement des patients volontaires qui viennent passer un
scanner dans le service ( privilégiant les patients « oncologiques »)
• Effectifs par pathologie insuffisant
• Seuls les cas où il y avait discordance de lecture entre la radiographie
pulmonaire seule et avec adjonction des radiographies soustraites ont
été contrôlées par TDM
• Lecture non indépendante des radiographies soustraites par rapport à
la radiographie pulmonaire conventionnelle. Néanmoins, la lecture
séparée des image soustraites parait artificielle puisque ces images sont
de toute façon délivrées avec le cliché standard
DISCUSSION
Augmentation de la dose reçue par le patient
- Dans les deux études récentes évaluant la performance diagnostique
de la soustraction double énergie sur capteur plan, l’exposition était
doublée de 110 à 220 µGy pour une radiographie pulmonaire de face
postéro-antérieure réalisée avec double énergie double exposition sur
capteur plan (J. Ricke et al. , F. Fischbach et al.)
- Cette augmentation doit être relativisée par le fait que l’utilisation
d’un capteur plan permet de réduire d’environ 50% cette exposition par
rapport à une radiographie sur film. Pour les capteurs plans basé sur la
technologie silicium/ CsI ,comme celui utilisé dans notre étude, cette
diminution de dose est de plus de 50% et n’entraîne pas
d’augmentation de dose lors de la réalisation d’une radiographie double
énergie comparativement à une radiographie pulmonaire
conventionnelle sur film ou sur un autre système numérique d’après F.
Fischbach
CONCLUSION
La radiographie double énergie permet une :
- Amélioration de la confiance diagnostique
- Amélioration de la caractérisation des lésions thoraciques calcifiées
Elle représente une faible augmentation de l’irradiation avec les
systèmes de type capteur plan.
Elle présente donc à notre avis un intérêt dans la pratique clinique pour
les patients nécessitant une radiographie pulmonaire.
Téléchargement