Optique : Spectroscope à réseau - Application à la mesure de

publicité
Lycée CHAPTAL – PC*
E. FREMONT
Travaux pratiques – Série 1
Optique : Spectroscope à réseau - Application
à la mesure de la constante de Rydberg
Objectifs du TP :

Revoir l’utilisation d’un goniomètre (réglages, lecture au vernier…).

Revoir les principaux résultats concernant la dispersion de la lumière par un réseau.

Mettre en œuvre un protocole de mesure du pas d’un réseau par transmission.

Envisager une application du réseau en spectroscopie.
Matériel à disposition :
1 goniomètre, 1 lampe à vapeur de mercure, 1 lampe à hydrogène, 1 réseau de diffraction d’environ 600
traits/mm, 1 ordinateur avec tableur (EXCEL, REGRESSI ou autre)
Introduction
Dans le domaine visible, le spectre de l’atome d’hydrogène présente de nombreuses raies dont la plus
intense est la raie rouge H , de longueur d’onde   656 nm . Au fur et à mesure que l’on s’approche des
faibles longueurs d’onde (et donc du violet), les raies se resserrent jusqu’à une raie limite H de longueur
d’onde   365 nm . C’est ce que découvrit l’astronome anglais Williams H UGGINS, dès 1881, en observant le
spectre du rayonnement émis par les étoiles.
En 1885, un professeur de mathématiques, Johann B ALMER, remarqua que les longueurs d’onde de ces raies
pouvaient être retrouvées à l’aide d’une formule simple comportant des nombres entiers. Le résultat de B ALMER
fut réécrit par le physicien suédois Johannes RYDBERG sous la forme suivante :
 1
1 
 RH 


 2

n2 
2
1
avec n  2
Dans cette formule, RH est la constante de Rydberg, constante que l’on cherche à mesurer dans ce TP.
La première interprétation du spectre de l’hydrogène et de la formule de R YDBERG fut proposée par le
physicien danois Niels BOHR en 1913. Bien que rationnellement peu satisfaisant, le modèle de BOHR de l’atome
d’hyrdogène reste fondamental sur les plans historique, pédagogique et épistémologique.
TP 4 - Optique
Page 1 sur 10
Lycée CHAPTAL – PC*
E. FREMONT
A. Quelques rappels sur le matériel utilisé dans ce TP
1. Le goniomètre
# Présentation générale
Un goniomètre, du grec « gônia » qui signifie « angle », est un instrument destiné – comme son nom
l’indique – à la mesure d’angles. Il comporte :

Un plateau circulaire gradué de 0° à 360°, et dont la finesse des graduations détermine la précision de
l’instrument. C’est au centre de ce plateau que l’on place le système d’étude qui nous intéresse (réseau
de diffraction, prisme, CD…).

Un collimateur, rotatif, destiné à former un faisceau parallèle à partir d’une fente source éclairée par
une source de lumière placée en amont.

Une lunette de visée, rotative, munie d’un réticule en forme de croix, permettant de pointer la direction
de l’image de la fente source. Cette lunette de visée, constituée de deux lentilles (un objectif et un
oculaire ; cf. schéma ci-dessous), est réglée de façon à être afocale.
Avant d’envisager d’utiliser le goniomètre pour effectuer des mesures, il est fondamental de régler le
collimateur et la lunette de visée à l’infini.
TP 4 - Optique
Page 2 sur 10
Lycée CHAPTAL – PC*
E. FREMONT
# Réglage de la lunette et du collimateur
On commence impérativement
par régler la lunette, qui présente
deux bagues de réglage, comme
indiqué sur la photo ci-contre. Le but
de ce réglage est de rendre le système
afocal, et de faire en sorte que
l’image intermédiaire d’un objet à
l’infini formée par l’objectif soit nette
dans le plan du réticule.
Le réglage de la lunette comporte deux étapes :

1ère étape : mise au point sur le réticule
En agissant sur la bague de réglage de l’oculaire, on cherche à obtenir une image nette du réticule sans
accomoder. Ce réglage est tout à fait personnel et dépend de la vue de l’observateur.

2ème étape : réglage de l’objectif
Il s’agit de placer le réticule dans le plan focal image de l’objectif, de manière à pouvoir observer ensuite
l’image de la fente source et le réticule de visée nets simultanément. Pour ce réglage, on utilise le principe de
l’autocollimation. On commence par éclairer le réticule à l’aide de la lampe auxiliaire intégrée à la lunette, en
n’oubliant pas de déployer la lame semi-réfléchissante à l’intérieur de la lunette. On dispose ensuite un miroir
plan, tenu à la main, devant l’objectif. Il faut alors agir sur la bague de réglage de sorte à former l’image du
réticule nette dans le plan du réticule.
Remarque : Une fois ces deux réglages effectués, si un second utilisateur souhaite observer à travers
l’instrument, le seul réglage à reprendre éventuellement est celui de la mise au point de l’oculaire pour
l’adapter à sa vue. Le réglage de l’objectif ne doit plus être modifié en revanche !
La lunette étant réglée, on passe au réglage du collimateur. Il suffit de viser le collimateur à l’aide de la
lunette, puis de tourner la bague de réglage jusqu’à ce que l’image de la fente soit nette à travers la lunette.
Remarques :
-
Ne pas oublier de remonter la lame semi-réfléchissante de la lunette de visée, sous peine de voir
plusieurs images de la fente source simultanément.
-
Il est impératif d’effectuer le réglage du collimateur avec une fente d’entrée assez fine afin de se
protéger d’un éblouissement dangereux !
Une fois ces deux instruments réglés, on peut utiliser le goniomètre pour effectuer des mesures d’angle
entre une direction de référence et une direction de visée. La mesure est alors réalisée par lecture sur un vernier
(gradué en minute d’angle sur les modèles disponibles au lycée).
TP 4 - Optique
Page 3 sur 10
Lycée CHAPTAL – PC*
E. FREMONT
# Principe de la lecture d’un angle au vernier
Rien de tel que de raisonner sur un exemple concret ! Imaginons la situation suivante :
La lecture de l’angle indiqué s’effectue en 3 temps :

On commence par repérer sur la partie fixe la valeur correspondant à la graduation située juste avant le
0 du vernier. Dans cet exemple, la graduation correspond à 5,5° ; la valeur mesurée sera donc comprise
entre 5°30’ et 6°.

On relève ensuite sur le vernier la valeur correspondant à la coïncidence vernier/rapporteur fixe. Dans
cet exemple, la valeur de coïncidence est de 4’.

On ajoute enfin ces deux valeurs, ce qui donne ici 5°34’ (= 5,57°).
2. Les lampes
Les lampes utilisées dans ce TP sont des lampes spectrales (lampe à vapeur de mercure, lampe à
hydrogène). Elles sont constituées d’une ampoule renfermant un gaz, que l’on ionise par des décharges
électriques entre deux électrodes. Les atomes du gaz ainsi excités émettent, lors de leur désexcitation spontanée,
un rayonnement qui se présente sous la forme d’un spectre de raies caractéristique du gaz présent dans
l’ampoule. Ces raies sont révélatrices de la quantification des niveaux d’énergie dans les atomes et les
molécules.
Allure d’un spectre lumineux discret
Les lampes sont alimentées sous haute tension (environ 500 V), via un transformateur élévateur. Cette haute
tension est nécessaire pour amorcer la première décharge, lorsque la lampe est froide. Les lampes n’atteignent
leur régime de fonctionnement permanent qu’au bout de quelques minutes. Si l’on vient à les éteindre au cours
de la séance, il faudra attendre qu’elles se refroidissent avant de les rallumer. En effet, la haute tension nécessaire
à l’amorçage de la première décharge dépend de la pression du gaz, et celle-ci augmente avec la température…
TP 4 - Optique
Page 4 sur 10
Lycée CHAPTAL – PC*
E. FREMONT
3. Le réseau par transmission
Un réseau plan est un objet constitué de N ouvertures diffractantes identiques, réparties régulièrement
dans le plan du réseau. Un voilage transparent constitue un bon exemple de réseau par transmission.
Le réseau par transmission étudié dans ce TP peut être représenté par un plan opaque percé d'un grand
nombre, noté N, d'ouvertures rectangulaires, parallèles, équidistantes de a. Ces ouvertures rectangulaires (fentes)
sont désignées sous le nom de traits du réseau : ils ont une longueur H et une largeur b H . Le paramètre a
est le pas du réseau. La largeur totale L du réseau est alors donnée par la relation L  Na . On peut également
définir le nombre de traits par unité de longueur n 
1
.
a
Le tableau ci-après précise quelques ordres de grandeur :
n (traits/mm)
a (µm)
N
H (cm)
Réseau classique
300
3
104
3
Réseau performant
1000
1
4.104
4
La qualité d’un réseau est liée à sa périodicité : les traits doivent être rigoureusement identiques, sous peine
d'obtenir une figure de diffraction parasitée. Les réseaux les plus précis sont les réseaux calibrés qui sont obtenus
en gravant une surface métallisée avec une fine pointe de diamant. On peut également fabriquer des réseaux dits
holographiques, obtenus en enregistrant la figure d'interférence de deux ondes planes. Ces deux types de réseaux
sont très coûteux. L'avantage des réseaux calibrés est que l'on peut en fabriquer des répliques : on dépose sur le
réseau original une résine que l'on détache et que l'on fixe sur une plaque de verre. Les répliques obtenues sont
souvent de très bonne qualité.
B. Quelques rappels sur la théorie de la dispersion de la lumière par un réseau
1. Formule des réseaux
Derrière un réseau de N fentes, le phénomène lumineux observé est un phénomène d’interférences entre N
ondes cohérentes. Concrètement, pour chaque longueur d’onde contenue dans le spectre de l’onde incidente, on
voit apparaître derrière le réseau plusieurs images de la source, situées de part et d’autre de la direction de l’onde
TP 4 - Optique
Page 5 sur 10
Lycée CHAPTAL – PC*
E. FREMONT
incidente. Par exemple, la figure suivante est celle observée sur un écran lorsqu’on éclaire un réseau plan (100
traits/mm) par un laser hélium-néon.
La position relative de ces différentes images dépend essentiellement des caractéristiques du réseau et de la
longueur d’onde. Elles se forment en effet dans les directions qui donnent lieu à un phénomène d’interférences
totalement constructives entre les N ondes diffractées par les traits du réseau.
On note i la direction d’incidence, repérée par rapport à la normale au réseau, et  la direction
d’observation (cf. schéma ci-après). Retrouver l'expression de la différence de marche δ à l'infini entre les ondes
diffractées par deux traits consécutifs du réseau.
En exploitant la condition d’interférences constructives, établir la formule des réseaux, qui donne la
direction angulaire  k , selon laquelle on observe la k-ième image ( k  ) de la source derrière le réseau :
sin k  sin i  k

a
(k
)
L’entier k est appelé ordre de diffraction. L’image de la source associée à la direction  k est appelée image
d’ordre k.
Quelle(s) particularité(s) caractérise(nt) l’image d’ordre 0 ?
TP 4 - Optique
Page 6 sur 10
Lycée CHAPTAL – PC*
E. FREMONT
2. Minimum de déviation d’une longueur d’onde
Pour l'image d'ordre k associée à la raie de longueur d’onde  , on définit l'angle de déviation par
Dk  k  i .
Montrer, en dérivant la formule des réseaux par rapport à i , que Dk passe par un minimum lorsque i
varie. Vérifier que, dans le cas où la déviation est minimale, le faisceau incident et le faisceau diffracté ont des
directions symétriques par rapport au plan du réseau.
Montrer que la déviation minimale Dk ,min pour une longueur d'onde donnée, dans le spectre d'ordre k, est
donnée par :
sin
Dk ,min
2

k
2a
3. Exercices d’application
# Exercice 1
Un faisceau laser (   632,8 nm ) est diffracté par un réseau de 100 traits par millimètre. On
suppose que le réseau est éclairé sous incidence normale.
1/ Quel est le nombre d’ordres de diffraction observables ?
2/ La figure obtenue sur un écran situé à la distance d derrière le réseau (l’écran étant parallèle au plan du
réseau) est celle présentée précédemment :
En admettant que l’échelle de la photographie est de 1 :10, évaluer la distance d .
# Exercice 2
On éclaire un réseau de pas a par un faisceau parallèle de lumière blanche, sous incidence normale.
1/ Dans le spectre d’ordre 1, indiquer la séquence des couleurs observées à partir de la normale au réseau.
Qu’en est-il pour le spectre d’ordre -1 ?
2/ Etablir la condition pour que les spectres d'ordres k et k  1 ne se recouvrent pas. On supposera que les
radiations visibles de la lampe blanche correspondent à des longueurs d'onde comprises entre 400 nm et
800 nm.
TP 4 - Optique
Page 7 sur 10
Lycée CHAPTAL – PC*
E. FREMONT
# Exercice 3
On utilise un réseau de pas a  2, 2  m . Il est éclairé par un faisceau parallèle provenant d’une
lampe à mercure. On isole une raie verte du spectre à l’aide d’un filtre interférentiel et on pointe pour
différents ordres les images obtenues. En repérant les angles par rapport à la normale au réseau, on obtient
les résultats suivants :
k
1
2
3
k
14°09’
29°15’
47°09’
En déduire une estimation de la longueur d’onde de la raie et l’incidence du faisceau sur le réseau.
# Exercice 4
On observe le spectre d’ordre 2 d’une lampe à vapeur de mercure. Pour la raie violette de 435,8 nm,
le minimum de déviation est de 51°40’. Pour la raie verte, le minimum de déviation est de 66°12’.
Déterminer le nombre de traits par millimètre et la longueur d’onde de la raie verte.
C. Manipulation n°1 : Mesure du pas du réseau utilisé dans ce TP
 Régler le goniomètre puis positionner le réseau étudié sur la plateforme mobile.
1. Première méthode : Utilisation de la formule des réseaux en
incidence normale
# Réglage de l’incidence normale du faisceau collimaté sur le réseau
Le principe de ce réglage repose sur la méthode de l'autocollimation. Il doit être réalisé très
soigneusement, sous peine d’introduire une erreur systématique importante dans chacune des mesures qui sera
réalisée par la suite !
 Orienter la plateforme du goniomètre de telles sorte que l'axe du collimateur soit approximativement
perpendiculaire au plan du réseau.
 Eclairer avec la lampe à vapeur de mercure. Repérer l’image d'ordre 0 de la fente source et la pointer
avec la lunette. Bloquer la lunette dans cette position.
 Mettre en place la lame semi-réfléchissante de la lunette. Observer la fente du collimateur (ordre 0), le
réticule de la lunette et l’image du réticule après réflexion sur le réseau (agir si besoin sur les vis de
réglage de l’horizontalité de la lunette et/ou de la plateforme).
TP 4 - Optique
Page 8 sur 10
Lycée CHAPTAL – PC*
E. FREMONT
 Tourner alors la plateforme du goniomètre jusqu'à mettre en coïncidence la fente du collimateur, le
réticule et son image.
 Lorsque c'est le cas, bloquer la plate-forme et ne plus y toucher : le réseau est alors éclairé sous
incidence normale.
 Justifier le protocole de réglage.
# Réalisation des mesures
 Mesurer  0 (position angulaire de l’image d'ordre 0 et donc de la normale au réseau).
 Mesurer  k pour toutes les raies visibles de la lampe à vapeur de mercure dans un ordre k donné (on
prendra k = 1 ou 2). Compléter le tableau de mesures suivant :
Couleur
Intensité
λ (en nm)
Rouge
Pâle
623,4
Jaune
Intense
579,1
Jaune
Intense
577,0
Vert – Jaune
Très intense
546,1
Vert
Très pâle
497,4
Bleu – Vert
Pâle
491,6
Bleu – Violet
Intense
435,8
Violet
Pâle
407,8
Violet
Intense
404,7
k
k   k  0
sin k
Remarque : L'identification de certaines raies n'est pas toujours évidente (notamment dans le bleu et dans le
violet). On commencera par la raie rouge la plus extrême et on procèdera par longueurs d'onde décroissantes,
en traçant la courbe au fur et à mesure pour vérifier qu'il n'y a pas de point aberrant. Si c'est le cas, la raie a été
mal identifiée…
TP 4 - Optique
Page 9 sur 10
Lycée CHAPTAL – PC*
E. FREMONT
# Interprétation
 Tracer la courbe sin k  f ( ) .
 En déduire le pas a du réseau. Comparer à la valeur donnée par le constructeur.
2. Deuxième méthode : Utilisation du minimum de déviation
# Observation préliminaire
 Observer la raie verte intense de la lampe au mercure dans le spectre d’ordre 1.
 Tourner lentement la plateforme supportant le réseau afin de la placer dans la position qui donne le
minimum de déviation. Au cours de la rotation, on doit observer, dans le champ de la lunette, le
déplacement régulier de la raie jusqu’à un point de rebroussement, suivi d’un changement de sens du
déplacement. Le minimum de déviation est atteint au moment où la raie passe par la position de
rebroussement.
# Mesure du pas du réseau
 Proposer un protocole permettant de déterminer le pas du réseau à partir du minimum de déviation de la
raie verte du mercure.
 Mettre en place le protocole et en déduire la valeur de a.
D.
Manipulation n°2 : Mesure de la constante de Rydberg
On considère désormais que le pas a du réseau est connu.
 Justifier que la connaissance de a et la mesure du minimum de déviation Dk ,min associé à la raie de
longueur d’onde λ permettent de déterminer λ, ce qui constitue une méthode de mesure intrinsèque de
longueur d'onde.
 Proposer, puis mettre en œuvre, un protocole de mesure de la constante de Rydberg.
ATTENTION !!! La lampe à hydrogène ne s'utilise que sur des durées maximales de 1 minute, intercalées de
périodes de repos de 10 minutes.
TP 4 - Optique
Page 10 sur 10
Téléchargement