1) Expliquer qualitativement dans quelle(s) direction(s) rayonne le film. Justifier la réponse
par un argument physique.
2) Quelle est l’ouverture angulaire du rayonnement lorsque le film est un carré de côté L ?
(aucun calcul n’est demandé).
3) Donner la démarche qui permet de calculer la puissance rayonnée le long de l’axe z
dans un angle solide d
Ω
. On ne fera aucun calcul mais on précisera de façon détaillée
l’enchainement des quantités à calculer.
III Emission de rayonnement thermique par un film mince à température T.
On considère le même film métallique que dans la partie I. Dans cette partie, le film n’est
pas parcouru par un courant uniforme mais est porté à une température T. De ce fait, les
charges sont animées d’un mouvement d’agitation thermique produisant ainsi des courants
aléatoires. De ce fait, les champs émis par différents points ne peuvent pas interférer. On se
propose de calculer la puissance rayonnée par ce film à la pulsation ω.
1) Expliquer qualitativement dans quelle(s) direction(s) rayonne le film. Justifier la réponse
par un argument physique.
2) On considère tout d’abord un élément de volume δV cubique de côté très petit devant la
longueur d’onde. Cet élément est parcouru par un courant j(r’,ω) lié aux mouvements
aléatoires des charges qu’il contient.
a. Donner l’expression du potentiel vecteur δA du champ qu’il rayonne en champ lointain
en fonction de j et de δV notamment.
3) Calculer la puissance δP rayonnée par l’élément de volume δV dans un angle solide
dΩ en fonction de j(r’,ω).
4) On peut calculer en physique statistique la valeur moyenne des fluctuations du courant :
où Lω°(T) est la luminance du rayonnement d’équilibre.
a. Calculer la puissance rayonnée Pe par l’ensemble du film le long de l’axe Oz par unité de
surface et d’angle solide.
b. En déduire l’expression de l’émissivité monochromatique du film que l’on notera Eω.
Comparer ce résultat avec l’absorptivité Aω. On rappelle que l’émissivité est définie par la
loi exprimant la puissance émise par unité de surface et d’angle solide :