Examen avril 2009
Electromagnétisme
Question de cours (8 pts)
1 a Ecrire la forme générale du champ dans le vide sous la forme du développement en
ondes planes.
1b Préciser ce que sont les ondes évanescentes et les ondes propagatives.
1c Utiliser cette représentation pour expliquer la limite de résolution des instruments
d’optique.
2. Dans un calcul de rayonnement, on peut être amené à faire l’approximation de champ
lointain et l’approximation de dipolaire.
2a Expliquer ce qu’est l’approximation de champ lointain et donner les conditions de
validité.
2b Même question pour l’approximation dipolaire.
3. a On considère un milieu linéaire homogène dispersif local. Ecrire la loi d’Ohm locale
reliant la densité de courant j au champ électrique en un point r dans le domaine
fréquentiel ET dans le domaine temporel.
3.b Comment est modifiée cette loi si le milieu est non-local ?
4. Une lame d'or d'épaisseur 2 10-8m est éclairée en lumière blanche en incidence normale.
Sachant que l'indice de l'or vaut 0.84+i 1.84 à 0.5 µm et 0.16+i4.84 à 0.8 µm, dire quelle
est la couleur de la lame lorsqu'elle est observée en transmission. Justifier de façon
détaillée votre réponse.
5 Calculer la longueur d’atténuation l d’une onde se propageant dans un milieu diffusant
contenant n particules par unité de volume. La section efficace de diffusion de chaque
particule est notée σ.
6 Qu’est-ce que c’est qu’un guide d’ondes monomode ? pourquoi faut-il utiliser un guide
monomode pour les télécommunications ? quelle est la taille transverse typique d’un guide
monomode ?
Examen avril 2009
Electromagnétisme
Problème (12 pts)
Les trois parties peuvent être traitées de façon indépendante.
Le problème aborde l’émission et l’absorption par un film métallique mince d’épaisseur
faible par rapport à la profondeur de peau. L’objet du problème est d’étudier l’absorption et
l’émission par un film métallique. On comparera l’émission par une nappe de courant avec
l’émission thermique. On vérifiera aussi sur cet exemple la deuxième loi de Kirchhoff
(l’émissivité est égale à l’absorptivité).
I Puissance absorbée par un film mince.
On considère un film mince métallique infiniment étendu compris entre z=0 et z=d. Ce
film est éclairé par une onde plane monochromatique sous incidence normale dont le
champ électrique est noté E exp(-ikz-iωt). On fera l’hypothèse que d<<δ et d<< λ δ et λ
représentent respectivement l’épaisseur de peau et la longueur d’onde dans le vide. Le film
est entouré d’air que l’on peut assimiler à du vide.
1) On suppose que le champ dans le matériau a une amplitude uniforme égale à celle du
champ incident E. Pouvez-vous justifier cette hypothèse dans la limite l’épaisseur du
film tend vers zéro ?
2) Calculer la puissance incidente par unité de surface.
3) Calculer la puissance absorbée Pabs dans le matériau par unité de surface en fonction de
sa constante diélectrique généralisée notée εr.
4) En déduire l’absorptivité monochromatique que l’on notera Aω. Elle est définie par le
rapport entre la puissance absorbée par unité de surface et le flux incident par unité de
surface.
II Emission par un film mince parcouru par un courant uniforme.
On considère un film mince métallique infiniment étendu compris entre z=0 et z=d. Ce
film est parcouru par une densité de courant uniforme j0 de pulsation ω. On souhaite
calculer la puissance rayonnée par le film mince. On rappelle l’expression générale du
potentiel vecteur retardé :
A(r,t)=
µ
0
4
π
j(r' ,tR/c)
R
dr' R =rr'
1) Expliquer qualitativement dans quelle(s) direction(s) rayonne le film. Justifier la réponse
par un argument physique.
2) Quelle est l’ouverture angulaire du rayonnement lorsque le film est un carré de côté L ?
(aucun calcul n’est demandé).
3) Donner la démarche qui permet de calculer la puissance rayonnée le long de l’axe z
dans un angle solide d
Ω
. On ne fera aucun calcul mais on précisera de façon détaillée
l’enchainement des quantités à calculer.
III Emission de rayonnement thermique par un film mince à température T.
On considère le même film métallique que dans la partie I. Dans cette partie, le film n’est
pas parcouru par un courant uniforme mais est porté à une température T. De ce fait, les
charges sont animées d’un mouvement d’agitation thermique produisant ainsi des courants
aléatoires. De ce fait, les champs émis par différents points ne peuvent pas interférer. On se
propose de calculer la puissance rayonnée par ce film à la pulsation ω.
1) Expliquer qualitativement dans quelle(s) direction(s) rayonne le film. Justifier la réponse
par un argument physique.
2) On considère tout d’abord un élément de volume δV cubique de côté très petit devant la
longueur d’onde. Cet élément est parcouru par un courant j(r’,ω) lié aux mouvements
aléatoires des charges qu’il contient.
a. Donner l’expression du potentiel vecteur δA du champ qu’il rayonne en champ lointain
en fonction de j et de δV notamment.
3) Calculer la puissance δP rayonnée par l’élément de volume δV dans un angle solide
dΩ en fonction de j(r’,ω).
4) On peut calculer en physique statistique la valeur moyenne des fluctuations du courant :
jx
2=jy
2=jz
2=16
π
2
ε
0c2Im(
ε
r)
ω δ
VL
ω
0(T)
où Lω°(T) est la luminance du rayonnement d’équilibre.
a. Calculer la puissance rayonnée Pe par l’ensemble du film le long de l’axe Oz par unité de
surface et d’angle solide.
b. En déduire l’expression de l’émissivité monochromatique du film que l’on notera Eω.
Comparer ce résultat avec l’absorptivité Aω. On rappelle que l’émissivité est définie par la
loi exprimant la puissance émise par unité de surface et d’angle solide :
dP e = E
ω
L
ω
°(T) dSdΩ
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !