Moreggia PSI 2012/2013
1
Chap.3 Grandeurs standard de réaction
1. Définition des grandeurs de réaction
1.1. Avancement d’une réaction chimique
1.2. Définition d’une grandeur de réaction
1.3. Grandeurs standard de réaction
2. Enthalpie standard de réaction 
2.1. Méthode de calcul
2.2. Variation avec la température
2.3. Application : température de flamme
3. Entropie standard de réaction 
3.1. Méthode de calcul
3.2. Variation avec la température
3.3. Application directe
4. Enthalpie libre standard de réaction  Constante d’équilibre 
4.1. Méthode de calcul de 
4.2. Définition de la constante d’équilibre 
4.3. Variation avec la température de 
1. Définition des grandeurs de réaction
1.1. Avancement d’une réaction chimique
La réaction chimique suivante, écrite de manière formelle, sera étudiée tout le long de ce chapitre :
 
Avancement de la réaction
 
1.2. Définition d’une grandeur de réaction
Soit une grandeur extensive quelconque. On peut la voir comme fonction de deux groupes de variables :
 ou
Définition de la grandeur de réaction associée
  

Moreggia PSI 2012/2013
2
La grandeur de action informe sur l’évolution de lorsque la réaction se déroule : varie car la composition
du système varie.
Autre définition équivalente
 
1.3. Grandeurs standard de réaction
L’état standard de chacun des réactifs/produits est défini pour le corps pur à    , donc
indépendamment de la présences d’autres composés.
Les grandeurs standard de réaction sont donc définies à    et ne dépendent que de la température.
Remarque : Par la suite, on ne s’intéressera pas aux grandeurs de réaction non-standard, sauf dans le cas de
l’enthalpie libre.
2. Enthalpie standard de réaction 
2.1. Méthode de calcul
Par application des notions précédentes, définir l’enthalpie standard de réaction.
Définir ce qu’est un corps simple.
Chaque réactif/produit peut être créé à partir de corps simples, i.e. on peut l’écrire comme étant le produit d’une
réaction entre corps simple. L’enthalpie standard de cette action de formation s’appelle enthalpie standard de
formation . Il est évident que l’enthalpie standard de formation d’un corps simple est nulle.
La réaction étudiée (celle de départ) peut être vue comme une combinaison de toutes les réactions de formation de
chacun des réactifs/produits.
Loi d’additivi (loi de Hess)
 
2.2. Variation avec la température
Lorsque la pression est constante :   
En déduire la dépendance de avec la température
1e loi de Kirchhoff

  
Connaissant les capacités thermiques molaires des différents réactifs/produits, on peut en déduire à
n’importe quelle température. Les capacités thermiques seront toujours considérées indépendantes de T.
Attention à ne pas oublier d’ajouter la chaleur latente en cas de changement d’état : il y a alors une discontinuité
de en température (d’une quantité égale à la chaleur latente).
Moreggia PSI 2012/2013
3
Approximation d’Ellingham
Le plus souvent
  et est considéré comme étant indépendant de T.
2.3. Application : température de flamme
Souvent l’approximation  sera faite, et cette quantipermet alors de calculer  due à une réaction
chimique.
Si   la réaction est dite endothermique.
Sinon, la réaction est dite exothermique.
Exercice : On considère la action d’oxydation (totale), en phase gazeuse, de l’ammoniac en monoxyde d’azote
selon: 2 NH3(g) + 5/2 O2(g) = 2 NO(g) + 3 H2O(g)
Données: à 298 K : fH° (kJ.mol-1): NH3(g): - 46,19; H2O(g): - 241,83; NO(g): 90,37;
CP° (J.K-1.mol-1): gaz diatomiques: 27,2 ; H2O(g): 34,3 .
1. Calculer l’enthalpie standard de réaction à 298 K.
2. Cette réaction se déroule dans une enceinte adiabatique isobare, sous une pression constante de 5 bars.
On suppose que rH( 298K, 5 bar) r( 298 K). Le mélange initial stœchiométrique est introduit à
298 K. Calculer la température atteinte en fin de réaction.
Remarque : Si l’évolution est adiabatique isochore, on parle de température d’explosion.
3. Entropie standard de réaction 
3.1. Méthode de calcul
Par application des notions précédentes, définir l’enthalpie standard de réaction.
Généralement en exercice sont données les entropies molaires standard, il suffit alors d’utiliser la définition avec
les entropies molaires.
3.2. Variation avec la température
A partir de la 2e identité thermodynamique, exprimer  en fonction de et  dans le cas isobare
En déduire la dépendance de avec la température
2e loi de Kirchhoff


Connaissant les capacités thermiques molaires des différents réactifs/produits, on peut en déduire à
n’importe quelle température. Les capacités thermiques seront toujours considérées indépendantes de T.
Attention à ne pas oublier d’ajouter l’entropie de changement d’état si besoin : il y a alors une discontinuité de
en température (d’une quantité égale à l’entropie de changement d’état).
Moreggia PSI 2012/2013
4
Approximation d’Ellingham (2e volet)
Le plus souvent
  et est considéré comme étant indépendant de T.
3.3. Application directe
Exercice : On considère la réaction :
)(2)(2)(2 2
1lgg OHOH
Déterminer l’entropie standard de cette réaction : à 25°C ; puis à 80°C.
Données à 25°C (les Cp° sont supposés indépendants de la température ) :
O2(g)
H2(g)
H2Ol
So en J.K-1.mol-1
205,0
130,6
69,9
p en J.K-1.mol-1
30,0
27,3
75,3
4. Enthalpie libre standard de réaction  Constante d’équilibre 
4.1. Méthode de calcul de 
D’après la définition de l’enthalpie libre, on peut démontrer que :
 
On peut aussi calculer l’enthalpie libre standard de réaction à partir des enthalpies libres standard de formation.
L’idée est toujours la même : si la réaction chimique peut être vue comme une combinaison linéaire d’autres
réactions chimiques, alors sera la combinaison linéaire des de ces réactions.
4.2. Définition de la constante d’équilibre 
Définition de 
 
4.3. Variation avec la température de 
A partir de la relation de Gibbs-Helmoltz, démontrer la loi de Van’t Hoff.
Loi de Van’t Hoff



Connaissant les grandeurs thermodynamiques standard de chaque réactif/produit, on peut connaître la constante
d’équilibre à toute température.
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !