École Polytechnique de l’UNS
Polytech’Nice-Sophia
Parcours des Écoles d’Ingénieurs Polytech, 2eannée
2012–2013
Rigidité diélectrique .......................................................79
Rigidité diélectrique: quelques valeurs typiques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Courants électriques 81
Des charges en mouvement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Calculer la densité de courant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Conservation de la charge: forme intégrale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Conservation de la charge: forme locale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Électronique: loi des nœuds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Vitesses des électrons dans les conducteurs (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Vitesses des électrons dans les conducteurs (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Vitesses des électrons dans les conducteurs (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Courants dans les conducteurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Conductivité: quelques valeurs typiques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Électronique: loi d’Ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Électronique: puissance consommée . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Magnétostatique 94
Magnétisme ............................................................95
Loi de Biot-Savart ........................................................96
Champ magnétique d’une charge en mouvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Sources du champ magnétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Force magnétique (Laplace et Lorentz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Force magnétique sur un courant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Force entre deux courants.................................................. 101
Loi d’Ampère (forme intégrale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Théorème du rotationnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Loi d’Ampère (forme locale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Magnétostatique: récapitulatif 105
Équations du champ magnétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Analyse vectorielle 5: le nabla ~
∇107
L’opérateur nabla ....................................................... 108
Opérations avec le nabla (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Opérations avec le nabla (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Quelques formules avec le nabla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Le(s) Laplacien(s): nabla au carré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Gauss, Stokes, etc.: un autre point de vue (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Gauss, Stokes, etc.: un autre point de vue (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Électrostatique – Magnétostatique:une comparaison 115
Deux champs bien différents (?) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Phénomènes d’Induction(enfin, un peu de mouvement!) 117
« Force » électromotrice (1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
« Force » électromotrice (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
fem due au mouvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
fem due au mouvement: des exemples! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Induction électromagnétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Loi de Faraday (forme intégrale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Loi de Faraday (forme locale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
La règle du flux magnétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3www.polytech.unice.fr/~aliferis