Communiqué EXPERIENCES TRES CHAUDES - OPGC

publicité
C ommuniqué
de
presse
Clermont-Ferrand, le 17 juillet 2012
Contact Chercheur :
Denis ANDRAULT Chercheur
[email protected]
Contact Presse
Laboratoire Magmas et
Volcans :
Cécile SERGERE
04 73 34 67 22
[email protected]
EXPERIENCES TRES CHAUDES
La formation de points chauds volcaniques
passée aux rayons X en laboratoire
Les chercheurs du laboratoire Magmas et Volcans de Clermont-Ferrand (Université Blaise Pascal/
CNRS/IRD) ont recréé les conditions extrêmes que l’on trouve entre le noyau et le manteau terrestres, à
2900 km sous la surface, pour produire du magma. Avec l’aide du faisceau de rayons X de l’ESRF
(European Synchrotron Radiation Facility), le plus brillant au monde, ils ont pu soumettre quelques
échantillons microscopiques de roches à ces pressions et températures extrêmes. Les résultats
montrent pour la première fois que la roche partiellement fondue « flotte » a tendance à remonter dans le
manteau. Ces expériences confirmeraient l’hypothèse selon laquelle les volcans de points chauds tels
que les îles hawaïennes proviennent de « panaches », courants de magma issus de l’interface entre
noyau et manteau.
Ces résultats font l’objet d’une publication dans la prestigieuse
Revue Scientifique Nature le 19 juillet 2012
La plupart des volcans sont situés à l’endroit où les plaques continentales se rencontrent, associés aux
phénomènes de subduction, ou se séparent, associées aux dorsales océaniques. Ces volcans sont générés par
des magmas issus de la fusion partielle du manteau superficiel. Les « points chauds » volcaniques sont d’une
nature complètement différente car ils peuvent se trouver loin des frontières de plaques. Les îles Hawaïennes,
par exemple, sont une chaîne volcanique dont l’origine serait un mystérieux point chaud remontant des plus
grandes profondeurs de la Terre. La nature et l’origine de ces points chauds apportant du magma à la surface de
la Terre interpellent les scientifiques. Une explication serait que des courants de magma produits à l’interface
entre le noyau liquide de fer fondu et le manteau solide composé de silicates remonteraient vers la surface. La
preuve formelle de l’existence de ces courants étroits appelés « panaches » n’a pas encore pu être faite
notamment du fait de la précision encore insuffisante des images sismiques.
Mais quel matériau de l’interface noyau/manteau serait alors suffisamment léger pour remonter d’une profondeur
de 2900 km à travers le manteau solide ? C’est la question que le professeur Denis Andrault, enseignant
chercheur au Laboratoire Magmas et Volcans de l’Université de Clermont-Ferrand et ses collègues ont essayé
Laboratoire Magmas et Volcans – 5 rue Kessler – 63000 Clermont-Ferrand - Tél : 04 73 34 67 22
C ommuniqué
de
presse
de résoudre en reproduisant en laboratoire les conditions extrêmes existant à l’interface noyau/manteau. Ils ont
synthétisé des roches de composition chondritique (1) typique du manteau profond et primitif, en ont comprimé
1)
Composition chondritique:
composition d’un certain type
de météorites qui sont
pressenties pour être à
l’origine de la formation de la
terre
de minuscules éclats de la taille d’un grain de poussière (soit une cinquantaine de microns) entre deux pointes
de diamant coniques, créant ainsi une pression de plus d’un million d’atmosphères. Un faisceau laser a permis
de chauffer les échantillons à des températures comprises entre 3000 et 4000 degrés Celsius, des températures
typiques de la couche la plus profonde du manteau qui s’étale sur 200 km d’épaisseur au dessus de l’interface
noyau/manteau. Les échantillons sont extrêmement petits par rapport aux phénomènes naturels se produisant
dans le manteau profond. Pourtant, les phénomènes de fusion sont reproduits de façon très satisfaisante et
l'analogie de l'échelle de quelques microns dans les expériences à l'échelle des kilomètres dans le manteau
profond est donc fiable.
Un faisceau ultra-fin de rayons X, d’un diamètre micrométrique, a été employé pour cartographier les
échantillons et identifier les régions où la roche avait fondu, en utilisant la méthode de la diffraction X. Une fois
les régions fondues identifiées, une autre technique d'analyse mise en œuvre à l’ESRF, la fluorescence X, a
permis de comparer la composition chimique des parties solides et celles ayant fondu auparavant. Le fer, dont le
comportement est décisif pour la densité, a un comportement d'élément incompatible, c'est-à-dire qu'il est
localisé préférentiellement dans le liquide. Pourtant, il n'est pas suffisamment incompatible pour contrebalancer
d'autres effets majeurs de la fusion qui tendent à réduire la densité du liquide, en particulier la perte de
compacité dans l'arrangement tridimensionnel des atomes. Ces résultats d’une grande précision ont permis de
montrer que la roche fondue dans ces conditions de température et de pression est en fait plus légère que le
solide.
Sous l’effet de la gravité, la roche liquide - plus légère - se déplace vers la surface de la Terre, où le panache de
magma forme un volcan. Cette étude montre que les points chauds peuvent effectivement se former dans la
région intermédiaire entre le manteau inférieur solide et le noyau extérieur liquide où la température passe en
moins de 200 kilomètres de 3000 à 4000 degrés.
Les résultats de cette expérience sont essentiels pour mieux comprendre la formation des points chauds qui,
comme en Islande ou à la Réunion, peuvent provoquer des éruptions volcaniques aux conséquences parfois
désastreuses pour les populations. Ils éclairent aussi l’histoire primitive de la Terre car ils peuvent expliquer
comment des éléments chimiques importants pour notre vie de tous les jours ont pu s’accumuler dans la croûte
terrestre, très près de la surface, alors qu’ils proviennent de l’intérieur profond de notre planète.
Contact chercheur
Denis Andrault
04 73 34 67 81
[email protected]
Presse Laboratoire Magmas et Volcans
Cécile Sergère
04 73 34 67 22
[email protected]
Laboratoire Magmas et Volcans – 5 rue Kessler – 63000 Clermont-Ferrand - Tél : 04 73 34 67 22
Téléchargement