Loi de Wien Energie d`un photon et longueur d`onde Quantité de

Énoncé
C S M
Ex 1 : Classer les sources de lumière
Classer les sources de lumière suivantes dans les catégories sources à incandescence et sources à
luminescence.
La flamme d'un briquet ; une lampe halogène ; un laser ; une DEL ; le Soleil ; un écran d'ordinateur ; un tube
fluorescent ; du métal en fusion ; les braises ; les lucioles ; les éclairs.
Loi de Wien
Ex 2 : Détermination de la température des étoiles
Si vous observez attentivement les étoiles par une nuit claire et dans un espace dégagé, loin de la pollution
lumineuse urbaines, vous verrez que certaines étoiles apparaissent blanches, d'autres bleutées et enfin certaines
rougeâtres.
1) Que pouvez-vous déduire de cette couleur apparente ?
La loi de Wien permet de déterminer précisément la température de surface d'une étoile.
2) Compléter le tableau partie réponse.
Energie d'un photon et longueur d'onde
Ex 3 : Fréquence, longueur d'onde et énergie
L'astronomie gamma permet d'étudier les phénomènes les plus énergétiques de l'Univers. Un rayonnement est
considéré comme faisant partie du domaine gamma γ lorsque que sa longueur d'onde λ est inférieure à 10pm.
Le photon le plus énergétique jamais enregistré avait une énergie de 16 TeV.
La fréquence ν d'un rayonnement violet à l’extrémité de notre sensibilité visuelle est d'environ νviolet = 794 THz
1) Calculer l'énergie en joule d'un rayonnement γ de longueur d'onde λ=10pm
2) Convertir cette énergie en électronvolts
3) Comparer cette énergie à celle d'une radiation violette
4) Calculer la longueur d'onde λ du photon le plus énergétique enregistré
Ex 4 : le laser rouge
Le laser a révolutionné le monde industriel. Son principe a été prévu dès 1917 par
Albert Einstein, mais le premier prototype n'a vu le jour qu'en 1960.
Nous allons nous intéresser au laser rouge dont la couleur est due à l'excitation
d'un gaz : le néon. La longueur d'onde de ce laser vaut 633nm.
1) Calculer en eV l'énergie d'un photon émis par ce laser.
2) A quelle transition énergétique ce photon correspond-il ?
Si vous ne trouvez pas, expliquez votre démarche...
Quantité de matière
Ex 5 : Nombre d’atomes
La masse d’un atome AX est donnée par la relation
mX
A=A×1,67×1027 kg
1) À quoi correspond la lettre A dans la formule ci-dessus ?
2) Calculer le nombre d’atomes de 56Fe dans un clou de masse m=35g ?
3) En déduire la quantité de matière en 56Fe disponible
Ex 6 : Un sucre ?
Pierre met un morceau de sucre (m=6g) dans son café (le saccharose a pour formule C12H22O11)
1) Calculer la masse molaire du saccharose
2) Calculer la quantité de matière (= le nombre de moles) de saccharose présent dans un sucre
3) En déduire le nombre de molécules de saccharose présentes dans ce sucre
Données :
Constante de Planck : h = 6,63x10-34 J.s
Constante de Wien = 2,898x10-3 m.K
Valeur d'un électronvolt : 1 eV = 1,6x10-19 J
Vitesse de la lumière :
c = 299 792 458 m.s-1 ≈ 3,00 x 108 m.s-1
Quelques masses molaires (g.mol-1):
MC = 12; MO = 16 ; MH = 1 ;
Multiples et sous-multiples :
- kilo
- Mega
- Giga
- Tera
- Peta
- Exa
- zetta
- yotta
→ k
→ M
→ G
→ T
→ P
→ E
→ Z
→ Y
→ 103
→ 106
→ 109
→ 1012
→ 1015
→ 1018
→ 1021
→ 1024
- milli
- micro
- nano
- pico
- femto
- atto
- zepto
- yocto
→ m
→ µ
→ n
→ p
→ f
→ a
→ z
→ y
→ 10-3
→ 10-6
→ 10-9
→ 10-12
→ 10-15
→ 10-18
→ 10-21
→ 10-24
1
1
3
1
1
1
1
1
2
1
Spectre simplifié du néon
Energie (eV)
E5 = 20,66
E4 = 20,29
E3 = 19,45
E2 = 18,70
E1 = 18,37
Nom : Note :
Ex 1 : Classer les sources de lumière
sources à incandescence sources à luminescence
Ex 2 : Détermination de la température des étoiles
1)
2)
Température en °C Température en K Maximum d'émission
λmax
Domaine d'émission
UV/Visible/IR
Alcyone A 13000
Procyon 299 nm
Soleil 5430
Antares 3,5x103
Etoile de Barnard 0,96 µm
Ex 3 : Fréquence, longueur d'onde et énergie
1) Calculer l'énergie en joule d'un rayonnement γ de longueur d'onde λ=10pm
2) Convertir cette énergie en électronvolts
3) Comparer cette énergie à celle d'une radiation violette
4) Calculer la longueur d'onde λ du photon le plus énergétique enregistré
Ex 4 : le laser rouge
1) Calculer en eV l'énergie d'un photon émis par ce laser.
2) A quelle transition énergétique ce photon correspond-il ?
1
1
3
1
1
1
1
1
2
1
Ex 5 : Nombre d’atomes
1)
2)
3)
Ex 6 : Un sucre ?
1)
2)
3)
Bonus :
1
1
1
1
2
1
1
1 / 3 100%

Loi de Wien Energie d`un photon et longueur d`onde Quantité de

La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !