Ω = {1,2,3,4,5} F =P(Ω)
A:= {1,4} ⊂ B:= {1,2,4}C:= {3,4}A∩B=A A ∩C=B∩C=
A∩B∩CP(A∩B∩C) = P(A)P(B)P(C)P(A)P(B)
P(C) ]0,1[ P(A∩B) = P(A)6=P(A)P(B)P(A∩C)6=P(A)P(C)
P(B∩C)6=P(B)P(C)P(A)=1/3P(B)=1/2
P(C)=1/2P({4}) = P(A∩B∩C) =
P(A)P(B)P(C) = 1/12 P({1}) = P(A)−P({4}) = 1/4P({2}) = P(B)−P(A) = 1/6
P({3}) = P(C)−P({4})=5/12 P({5})=1−P({1,2,3,4}) = 1/12
Ω = {1,2,3,4} F =P(Ω) P
A={1,2}B={1,3}C={1,4}P(A) = P(B) = P(C)=1/2
P(A∩B) = P(A∩C) = P(B∩C)=1/4A B
A C B C P(A∩B∩C) = 1/46=
P(A)P(B)P(C) = 1/8A B C
n≥1 Ω {0,1}nP(Ω)
Pω= (ω1, . . . , ωn)∈Ωk∈ {1, . . . , n}
Xk(ω) = ωk
X1, . . . , Xn
p∈[0,1] Q(Ω,P(Ω))
(Ω,P(Ω),Q)X1, . . . , Xn
p
k∈ {1, . . . , n} {Xk= 1}={0,1}k−1× {1}×{0,1}n−k
2n−1
2n= 1/2X1, . . . , Xn
1/2B1, . . . , Bn⊂R
P(∀k∈ {1, . . . , n}, Xk∈Bk) = P(X1∈B1). . . P(Xn∈Bn).
Bk{0,1}
Bk0 1 i
k Bk0 1 P(Xk∈Bk) = 1/2
n−i k {0,1} ⊂ BkP(Xk∈Bk) = 1
2−i
2n−i
2n= 2−i
p∈[0,1] Q(Ω,P(Ω))
(Ω,P(Ω),Q)X1, . . . , Xn
p