PC* Corrigé DM 3 Exercice 1 Intégrale de Wallis et formule de Stirling

2016 2017
t7→ sinn(t) [0, π/2]
nN, In>0
f[a, b]R+Zb
a
f(u)du = 0
t[a, b], f(t) = 0
nN, In+1 In=Zπ/2
0
sinn(t)(sin t1)dt
[0, π/2] nN, In+1 In
I0=Zπ/2
0
1dt =π
2I1= [cos t]π/2
0= 1
n n 2
In=Zπ/2
0
cosn1(t) cos(t)dt =cosn1(t) sin(t)π/2
0Zπ/2
0
(n1) cosn2(t)(sin t) sin t(t)dt
In= 0 + (n1) Zπ/2
0
cosn2(t)(1 cos2t)dt = (n1)In2(n1)In
∀ ∈ N, n 2, In=n1
nIn2
n n NInIn1=π
2n(Pn)
n= 0 I0I1=π
2×1 = π
2×1
(Pn)n
nNIn+1 =n
n+ 1In1
In+1In=n
n+ 1In1In=n
n+ 1 ×π
2n
In+1In=π
2(n+ 1) (Pn+1)
n
nNIn+1 InIn1
In1
n
n+ 1In1InIn1
In>0n
n+ 1InIn1I2
nInIn1
π
2(n+ 1) I2
nπ
2n
In>0rn
n+ 1 In2n
π1 lim
n+
In2n
π= 1
Inπ
2n
kNI2k+2
I2k
=2k+ 1
2k+ 2
p1
Y
k=0
I2k+2
I2k
=I2p
I0
=
p1
Y
k=0
2k+ 1
2k+ 2 =1×3× ··· × (2p1)
2×4× ··· × (2p)=(2p)!
(2 ×4× ··· × (2p))2
2016 2017
I2p=(2p)!
(2p×p!)2I0=(2p)!
22p(p!)2
π
2
p I2p+1I2p=π
2(2p+ 1)
I2pI2p+1 =π
2(2p+ 1)
22p(p!)2
(2p)!
2
πI2p+1 =22p(p!)2
(2p+ 1)!
K n!K nnenn
I2p(2p)2pe2p2pK
22p(ppeppK)2
π
2=π
K2pI2pπ
2×2p
lim
p+
I2p
I2p
= 1 = lim
p+
π
K2p
2p
π=2π
KK=2π
n!nnen2πn
X(1)n
2n+ 1
nNun=1
2n+ 1 lim un= 0 un+1 =1
2n+ 3 un
(un)X(1)nun
k(1)k
2k+ 1 =Z1
0
(1)kt2kdt =Z1
0
(t2)kdt
n
X
k=0
uk=
n
X
k=0 Z1
0
(t2)kdt =Z1
0 n
X
k=0
(t2)k!dt
t[0,1],t26= 1
Sn=
n
X
k=0
uk=Z1
0
1(t2)n+1
1(t2)dt =Z1
0
1
1 + t2dt Z1
0
(t2)n+1
1 + t2dt
n Kn=Z1
0
(t2)n+1
1 + t2dt
|Kn| ≤ Z1
0
t2n+2
1 + t2dt Z1
0
t2n+2dt =1
2n+ 3 lim
n+Kn= 0
n Sn= [arctan(t)]1
0Kn=π
4Kn
(Sn)π/4
X(1)n
2n+ 1 S=π/4
S=
+
X
n=0
(1)n
2n+ 1 =π
4nN, Rn=SSn=Kn=Z1
0
(t2)n+1
1 + t2dt
X π
4
n
X
k=0
(1)k
2k+ 1!=XRn=XZ1
0
(t2)n+1
1 + t2dt
2016 2017
n
Tn=Z1
0 n
X
k=0
(t2)k+1!dt
1 + t2=Z1
0 n
X
k=0
(t2)k!t2
1 + t2dt
Tn=Z1
0
1(t2)n+1
1 + t2
t2
1 + t2dt =Z1
0
t2dt
(1 + t2)2+K0
n
|K0
n| ≤ Z1
0
t2n+4dt =1
2n+ 5
lim
n+Tn=Z1
0
t2
(1 + t2)2dt
π
4=Z1
0
dt
1 + t2=t1
1 + t21
0Z1
0
t×2t
(1 + t2)2dt
Z1
0
t2
(1 + t2)2dt =π
81
4
+
X
n=0
Rn=1
4π
8
a > 0X(1)n
an + 1
Sn(a) =
n
X
k=0 Z1
0
(ta)kdt =Z1
0
1(ta)n+1
1 + tadt =Z1
0
dt
1 + taKn(a)
|Kn(a)| ≤ Z1
0
tna+adt =1
(n+ 1)a+ 1 lim
n+Kn(a)=0
S(a)S(a)
Sn(a)Kn(a)
S(a) = Z1
0
dt
1 + tadt
Rn(a) = Kn(a) = Z1
0
(ta)n+1
1 + tadt
n
X
k=0
Kk(a) = Z1
0 n
X
k=0
(ta)k!ta
1 + tadt =Z1
0
ta
(1 + ta)2+Z1
0
(ta)n+1
(1 + ta)2tadt
Z1
0
t(n+2)adt =1
(n+ 2)a+ 1
+
X
n=0
Rn(a) = Z1
0
ta
(1 + ta)2dt
+
X
n=0
(1)n
n+ 1 = 11
2+1
31
4+··· =Z1
0
dt
1 + t= ln 2
Rn(1) =
+
X
k=n+1
(1)k
k+ 1
+
X
n=0
Rn(1) = Z1
0
t
(1 + t)2dt =ln 2 + 1
2
Z Q
(p, q)Z2, p + (q) = pqZ(Z,+) (R,+)
2016 2017
a b Qp, q, p0, q0Zq > 0
q0>0a=p/q b =p0/q0a+ (b) = ab=pq0p0q
qq0Q
(Z,+) (Q,+) (R,+)
G(R,+) gG0 = g+(g)Gg= 0+(g)G
2g=g+ ((g)) GnN, ng G
(n+ 1)g=ng + ((g))
nN,ng =n(g)GgGpZ, pg G
aRaZ={xa / x Z}aZa x, y
p, q Z
x=pa y =qa x + (y) = (pq)aaZ
(aZ,+) (R,+)
G(R,+) aG
aZG
G(R,+) {0}
G+G
G α α
G G+
m= inf(A)⇔ ∀aA, m am0> m, m0A
m= inf(A)⇔ ∀aA, m am0> m, a0A / m a0< m0
A=]0,1[ inf(A) = 0 0 6∈ A
G+
G=πZG+={nπ , n N}inf G+=π
α= inf Q+Q+0α
nN,1/n Q+0α1/n α = 0
G(R,+) α= inf G+
α > 0α < 3α/2 3α/2G+
g G+αg < 3α
2
α < g g
G+g0G+
αg0< g
αg0< g < 3α/2d(g, g0) = gg0< d(3α/2, α/2) = α/2
gg0=g+ (g0)G g g0>0gg0G+
gg0α
α=gG+
αG αZG
2016 2017
xG p =bx
αc
px
α< p + 1 x < (p+ 1)α0xpα < α
α x 6∈ G+
G G
x= 0 x= G αZ
G=αZ
G(R,+) {0}
inf G+= 0
nN1/(n+ 1) G+
gnG+0< gn<1
n+ 1
x
nNyn=x
gngn
pg p ZgG G
x
gnx
gn
<x
gn+ 1
gn>0ynx<yn+gn0xyn< gn<1
n+ 1
(yn)nN=x
gngnnN
G
x
G
r G ={n+kr/(n, k)Z2}
rQr=p0
q0
p0Z
q0Np0q0±1
G=n+kp0
q0
(n, k)Z2=nq0+kp0
q0
,(n, k)Z
nq0+kp0
p0q0G=nN
q0, N Zo
inf(G+) = 1
q0
α= inf G+
G=αZ
1 = 1 + 0 ×rG q 1 = qα
r= 0 + 1 ×rG p r =
r=p
qQ
G αZrQ
GRr6∈ Q
1 / 6 100%

PC* Corrigé DM 3 Exercice 1 Intégrale de Wallis et formule de Stirling

Study collections
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !