Offre de stage M2 Biostatistique
Durée : 6 mois
EVALUATION ET COMPARAISON DE LA QUALITE DE VIE DES PATIENTS ATTEINTS DE CANCER EN
PRENANT EN COMPTE DE LE PHENOMENE D’ADAPTATION DES PATIENTS A LEUR MALADIE
(RESPONSE SHIFT)
EVALUATION AND COMPARISON OF THE QUALITY OF LIFE OF CANCER PATIENTS TAKING INTO
ACCOUNT ADAPTATION OF PATIENTS TO THEIR DISEASE (RESPONSE SHIFT)
Contexte
L’évaluation du vécu et de la qualité de vie (QdV) des patients atteints de cancer prend de nos jours
une place importante dans l’évaluation du suivi et des prises en charge et les données rapportées par
les patients eux-mêmes (Patient-Reported Outcomes, PRO) sont de plus en plus souvent recueillies
grâce à des questionnaires regroupant différents items (questions) au sein de différentes dimensions
(physique, émotionnelle, sociale, spirituelle…). Toutefois, la plupart des études se sont le plus
souvent focalisées sur différentes localisations cancéreuses (cancer du sein, cancer de la prostate..)
et peu d’études ont comparé la QdV des patients selon le type de cancer.
De plus, la très grande majorité des analyses présuppose que la perception qu’ont les patients de
l’instrument de mesure utilisé (le questionnaire) ne varie pas au cours de l’étude. Or, il est très
vraisemblable d’imaginer que les patients peuvent percevoir et interpréter différemment les
questions qui leur sont posées au cours du temps selon l’évolution de leur maladie. Ce phénomène,
appelé "response shift" (RS), pourrait être lié à la façon dont les patients s’adaptent à leur maladie.
Le RS peut résulter de trois processus différents : a) la recalibration (un changement dans les
standards de mesure internes du patient), b) la repriorisation (un changement dans les valeurs et
priorités du patient) et c) la reconceptualisation (un changement de définition du concept mesuré)
(Schwartz & Sprangers, 1999). En présence de RS, les évolutions observées des mesures de type PRO
peuvent alors ne pas refléter uniquement les véritables changements ressentis par les patients.
L’absence de prise en compte du RS lors des analyses peut alors conduire à des résultats biaisés et à
une puissance altérée mais on peut aussi souligner l’intérêt que représente le phénomène de RS
souvent lié à la manière dont les patients s’adaptent à leur pathologie cancéreuse.
Le stage s’inscrira dans l’étude ELCCA (Etude Longitudinale des Changements psycho-économiques
liés au Cancer) qui vise à mieux comprendre et à comparer l'évolution du cu et de la QdV des
patients atteints d’un cancer du sein ou d’un mélanome malin et à étudier l'adaptation
psychologique des patients à leur maladie en lien avec le phénomène de RS. Cette étude de cohorte
prospective bi-centrique avec un suivi longitudinal des patients pendant 2 ans a donné lieu à des
mesures répétées de la qualité de vie des patients (QLQ-C30), du bien-être subjectif (SWLS), du
développement post-traumatique (PTGI), de l’anxiété-dépression (HADS), du coping (Brief Cope) à
l’annonce du diagnostic (T0), 6 mois (T2), 1 an (T3) et 2 ans (T4). Etant donné le schéma longitudinal
de l’étude ELCCA et l’utilisation de mesures de type PRO, il est probable que la mesure de la QdV des
patients au cours du temps soit sujette à du RS, en particulier la QdV dans sa dimension
émotionnelle.
La majorité des méthodes qui ont été proposées à ce jour pour permettre la détection et la prise en
compte des différents types de RS (recalibration, repriorisation, reconceptualisation) sont adaptées à
l’analyse du RS au niveau des dimensions (Oort, 2005; Ahmed, 2011 ; Lowy, 2004). Or, il est
également intéressant d’explorer le RS au niveau des items, afin d’avoir une vision possiblement plus
précise de ce phénomène. Les modèles issus de la Théorie de Réponse aux Items (IRT) et en
particulier les modèles de la famille de Rasch (ayant des propriétés spécifiques permettant
notamment la gestion des données possiblement manquantes) sont une alternative intéressante,
ayant été spécifiquement développés pour des analyses au niveau des items (Fischer, 1995). Les
modèles de la famille de Rasch modélisent la probabilité des réponses aux items en fonction d’un
paramètre, souvent appelé trait latent, interprété comme par exemple la QdV véritablement
ressentie par le patient et des caractéristiques du questionnaire utilisé (paramètres d’items).
Une méthode, appelée "RespOnse Shift ALgorithm in Item response theory” (ROSALI), basée sur ce
type de modèles a été récemment développée pour permettre la détection et la prise en compte du
RS au niveau des items (Guilleux, 2015). Cette méthode est en cours d’évaluation par simulation et
semble particulièrement intéressante et performante pour la détection et prise en compte du RS lié à
la recalibration, ce qui parait par ailleurs être le type de RS le plus pertinent à évaluer au niveau des
items.
Objectif
Le stage visera à identifier le RS pouvant intervenir au cours du suivi des patients de l’étude ELCCA et
les facteurs associés. Une attention particulière sera portée à l’identification de covariables associées
à la survenue du RS avec un intérêt particulier pour l’étude du type de cancer (sein ou mélanome) ce
qui, à notre connaissance, n’a jamais été étudié.
Dans un premier temps, l’évolution de la QdV émotionnelle des patients au cours du temps sera
décrite sur l’ensemble du suivi sans prise en compte du RS. La détection et prise en compte du RS
(recalibration) sera ensuite réalisée en prenant en considération deux périodes temporelles: entre
l’annonce du diagnostic et 1 an (pendant les traitements) et entre 1 an et 2 ans (fin des traitements).
L’identification des covariables associées à la survenue du RS sera ensuite réalisée.
Description de la base de données
L’étude ELCCA comporte 220 patientes atteintes d’un cancer du sein et 80 patients atteints d’un
mélanome malin suivis pendant 2 ans à partir de l’annonce du diagnostic inclus dans 2 centres à
Nantes (ICO et CHU). A l’inclusion ainsi qu’au cours des 3 visites de suivi, la qualité de vie, le bien-être
subjectif, l’anxiété-dépression, les stratégies de coping ont été évalués avec le QLQ-C30, le SWLS, la
HADS, et le Brief Cope, respectivement. Les données sociodémographiques et le stade de la maladie
ont également été recueillis.
Missions
- Description de l’évolution du trait latent représentant la dimension émotionnelle de la QdV :
modèle longitudinal du crédit partiel (Partial Credit Model), c’est un modèle non linéaire à effets
aléatoires
- Détection et prise en compte du RS (recalibration): extension du modèle longitudinal du crédit
partiel avec paramètres d’items dépendants du temps
- Identification des covariables associées à la survenue du RS: modèle longitudinal du crédit partiel
avec paramètres d’items dépendants du temps selon la présence de RS et incluant des covariables
(type de cancer, niveaux d’anxiété-dépression et de bien-être subjectif à l’inclusion...)
Profil attendu
Le candidat devra être étudiant en Master 2 Biostatistique ou équivalent. Il devra avoir une bonne
connaissance des modèles linéaires généralisés à effets aléatoires. Il devra être à l’aise avec les
langages de programmation de logiciels statistiques (Stata ou SAS) et avoir une appétence pour la
programmation et les applications en santé. Des connaissances en psychométrie (mesure de
concepts subjectifs tels que la qualité de vie et les Patient Reported Outcomes) seraient appréciées.
Structure d’accueil : INSERM U1246 SPHERE « methodS in Patient-centered outcomes and HEalth
REsearch » http://www.sphere-nantes.fr/
L’unité Inserm U1246 SPHERE est une équipe de recherche des Universités de Nantes et de Tours.
Cette équipe de recherche pluridisciplinaire centre ses travaux sur la perception des patients de leur
état de santé et de leur implication dans la démarche thérapeutique. L’étudiant stagiaire collaborera
avec les membres de l’équipe particulièrement concernés par l’axe « Mesure de la perception et du
vécu du patient », composé de chercheurs qui ont tous une expérience de recherche sur la
problématique de la détection de l’effet du response shift et sont principalement localisés à l’IRS 2 de
Nantes.
Lieu de stage : Institut de Recherche en Santé 2 (IRS2) - 22, Boulevard Bénoni-Goullin, 44200 Nantes
Encadrants : Véronique Sébille, PU-PH et Myriam Blanchin, Ingénieur de recherche
Rémunération : Selon le minimum légal en vigueur au moment de la période du stage
Durée souhaitée : 6 mois selon les disponibilités de létudiant
Merci d’adresser votre CV et lettre de motivation à
Véronique Sébille
veronique.sebille@univ-nantes.fr
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !